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ABSTRACT

We study a family of inverse problems in which a continuous-
domain object is reconstructed from a finite number of noisy
linear measurements. We study regularization methods for
solving these problems in which the regularizers promote spar-
sity in the frequency domain. We show that sparse superposi-
tions of decaying sinusoids are solutions to these continuous-
domain linear inverse problems, where the number of terms in
the superposition is upper bounded by the number of measure-
ments. This results in new forms of regularization for sparse
reconstruction that are different from classical techniques. We
numerically illustrate the efficacy of these new regularization
techniques in the problem of image reconstruction.

Index Terms— inverse problems, regularization, sparsity,
Banach space, spectral Barron space

1. INTRODUCTION

Solving a linear inverse problem amounts to reconstructing
a continuous-domain object from a finite number of possibly
noisy linear measurements. The prototypical problem involves
the reconstruction of the continuous-domain object f : Rd →
R from a vector of measurements

y = H{f}+ ε ∈ RN ,

where H symbolizes the linear measurement process, ε ∈ RN
denotes a perturbation or noise term, typically assumed to
be a vector of i.i.d. zero-mean Gaussian random variables,
y ∈ RN denotes the measurements, andN denotes the number
of measurements (or data). This formulation captures many
real-world problems, e.g., in magnetic resonance imaging,
H{f} = {F (ωn)}Nn=1 is a vector of samples of the Fourier
transform F of f and in statistics and supervised machine
learning, H{f} = {f(xn)}Nn=1 corresponds to a vector of
samples of f . Clearly this problem is ill-posed since f is a
continuous-domain object being reconstructed from a finite
number of measurements.
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A common way to solve this problem is to assume, a priori,
that f can be written as a superposition of atoms from some
dictionary. That is, assume that

f =
∑
k∈Z

αkϕk,

where {ϕk}k∈Z is a dictionary of atoms such that each atom
ϕk maps Rd → R, and {αk}k∈Z are the expansion coeffi-
cients. The inverse problem is then solved by considering the
following regularized least-squares problem

min
α∈`p(Z)

∥∥∥∥∥y −H

{∑
k∈Z

αkϕk

}∥∥∥∥∥
2

2

+ λ‖α‖pp, (1)

where λ > 0 is an adjustable regularization parameter. While
the choice of p = 2 has classically been the common choice,
the last few decades have shown that sparsity (p = 1) plays
a key role in signal reconstruction [4, 11]. In particular, in
many real-world problems, assuming that the signal to be
reconstructed is sparse in some dictionary results in better
reconstruction error. Moreover, this idea plays a central role
in compressed sensing and sparse dictionary learning [7, 9, 5].

Let α̂ be a solution to (1). Then, the object that generated
the measurements is estimated by

f̂ =
∑
k∈Z

α̂kϕk. (2)

The problem in (1) is the so-called synthesis formulation of the
problem since the resulting solution is explicitly synthesized
from the dictionary {ϕk}k∈Z. When p = 1 and {ϕk}k∈Z is
an orthogonal wavelet basis, the estimator in (2) is the well-
known wavelet shrinkage estimator [10].

In this paper, we will adopt the so-called analysis (or vari-
ational) formulation of this problem in which the estimator is
a solution to a variational problem of the form

min
f∈X ′

‖y −H{f}‖22 + λ‖f‖pX ′ , (3)

where λ > 0 and p ∈ [1,∞) are adjustable hyperparameters,
X ′ is an appropriate native space, and the regularization term
‖·‖X ′ is typically a norm or seminorm that defines X ′. This
formulation captures many techniques for estimating objects
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from measurements including splines [8, 15, 25, 14] and neural
networks [17, 18, 20, 19]. We write X ′ since it’s convenient
to view the native space as a dual space.

There are many works that study the problem of recon-
structing infinite-dimensional objects from measurements [1,
6, 12], and this work provides a new perspective. In this pa-
per, we study the problem in (3) where the regularization term
corresponds to the sparsity of the first s ≥ 0 (fractional) deriva-
tives of f in the frequency domain. These regularization terms
define function spaces known as the so-called spectral Barron
spaces studied by a number of authors in the context of approx-
imation theory with neural networks [2, 16, 22]. It turns out
these spaces are rather interesting from a signal reconstruction
perspective and differ from classical Fourier techniques due to
their sparsity-promoting nature. Let Bs(Rd) denote the spec-
tral Barron space of order s, which is the space of functions
f : Rd → R in Bs(Rd) such that the quantity

‖f‖Bs(Rd) = ‖(1 + ‖·‖2)sF (·)‖M(Rd)

is finite, where F is the Fourier transform of f and theM-
norm is a “generalization” of the L1-norm that can also be
applied to distributions such as the Dirac impulse. Whenever
the quantity (1 + ‖·‖2)sF (·) is a bona fide function (and not
a distribution), we have that

‖f‖Bs(Rd) =

∫
Rd

(1 + ‖ω‖2)s|F (ω)|dω.

In this paper, we show that

1. Bs(Rd) is a Banach space1.

2. Under mild conditions on the measurement operator H,
the solution set to the variational problem

min
f∈Bs(Rd)

‖y −H{f}‖22 + λ‖f‖Bs(Rd), (4)

is completely characterized by sparse superpositions of
decaying sinusoids of the form

s(x) =

K∑
k=1

αk(1 + ‖ωk‖2)−se j2πω
T
kx,

where j2 = −1, ωk ∈ Rd, k = 1, . . . ,K, and K ≤
N , where N is the number of measurements. These
solutions are sparse in the sense that ‖s‖Bs(Rd) = ‖α‖1,
and in the sense that the Fourier transform of s is an
impulse train.

3. Many convolution operators satisfy the mild conditions
on H, and therefore the problem becomes equivalent to
deconvolution.

4. We numerically illustrate the efficacy of the regulariza-
tion scheme in (4) for image reconstruction.

1In fact, it is a Banach space with a sparsity-promoting norm.

2. MAIN RESULTS

In order to prove our results outlined in Section 1, we require
some definitions and notation from functional analysis [13].
Let S (Rd) denote the Schwartz space of smooth and rapidly
decaying test functions in Rd with continuous dual S ′(Rd),
the space of tempered distributions on Rd. Let C0(Rd) denote
the space of continuous functions vanishing at infinity with
continuous dualM(Rd), the space of finite Radon measures.
The space M(Rd) is a Banach space when equipped with
the total variation norm in the sense of measures, which can
be viewed as a “generalization” of the L1-norm, but may
also be applied to distributions such as the Dirac impulse2.
Since S (Rd) is dense in C0(Rd), we may viewM(Rd) as a
subspace of S ′(Rd). In particular, we may view it, formally,
as the space of “absolutely integrable distributions”. Moreover,
the M-norm is the continuous-domain analogue of the `1-
norm. Working with these spaces allows us to rigorously work
with distributional Fourier transforms and derivatives.

Given f ∈ S ′(Rd), consider the operator

Bs : S ′(Rd) 3 f 7→ (1 + ‖·‖2)sF (·) ∈ S ′(Rd),

where F is the (distributional) Fourier transform3 of f . Then,
the spectral Barron space of order s ≥ 0 is given by

Bs(Rd) :=
{
f ∈ S ′(Rd) : ‖Bs f‖M(Rd) <∞

}
. (5)

In this paper, we are interested in the solutions to the varia-
tional problem in (4). Notice that ‖Bs f‖M(Rd) corresponds
to the integrability (really the total variation in the sense of
measures) of the first s derivatives of f in the frequency do-
main and therefore measures sparsity in the frequency domain.
Before characterizing the solution set to (4), we require some
intermediary results summarized in the following lemma.

Lemma 1. The space Bs(Rd), s ≥ 0, when equipped with
the norm

‖f‖Bs(Rd) := ‖Bs f‖M(Rd) (6)

has the following properties:

1. It is a Banach space.

2. There exists a Banach space X such that X ′, the contin-
uous dual of X , is Bs(Rd).

3. The extreme points of the unit ball{
f ∈ Bs(Rd) : ‖f‖Bs(Rd) ≤ 1

}
are of the form x 7→ ±(1 + ‖ω‖2)−se j2πω

Tx, ω ∈ Rd.
2Indeed, for any f ∈ L1(Rd) we have that ‖f‖L1(Rd) = ‖f‖M(Rd).

Moreover, the shifted Dirac impulse δ(· − x0), x0 ∈ Rd, is not in L1(Rd)
but is inM(Rd) with the property that ‖δ(· − x0)‖M(Rd) = 1.

3If f ∈ L1(Rd) ∩ L2(Rd), then F (ω) =
∫
Rd f(x)e

− j2πωTx dx.
Working with this normalization of the Fourier transform allows for the clean-
est arguments, avoiding the necessity of keeping track of normalization con-
stants.

5604



Proof. Consider the operator

B−1s : ϕ 7→
∫
Rd

(1 + ‖ξ‖2)−se j2πξ
T(·)ϕ(ξ) dξ,

where ϕ ∈ S (Rd). Note that for ϕ ∈ S (Rd),

(Bs B−1s ϕ)(ω)

= (1 + ‖ω‖2)s
∫
Rd

∫
Rd

(1 + ‖ξ‖2)−se j2πξ
Tx

ϕ(ξ) dξ e− j2πωTx dx

= (1 + ‖ω‖2)s
∫
Rd

∫
Rd

e j2πξ
Txe− j2πωTx dx

(1 + ‖ξ‖2)−sϕ(ξ) dξ

(∗)
= (1 + ‖ω‖2)s

∫
Rd

δ(ξ − ω)(1 + ‖ξ‖2)−sϕ(ξ) dξ

= (1 + ‖ω‖2)s(1 + ‖ω‖2)−sϕ(ω) = ϕ(ω),

where (∗) holds since the Fourier transform of x 7→ e j2πξ
Tx is

the Dirac impulse ω 7→ δ(ξ−ω). Thus, B−1s is a right-inverse
of Bs when restricted to S (Rd). We can then extend B−1s to
act onM(Rd) with the same right-inverse property.

Next, note that for f ∈ S (Rd),

(B−1s Bs f)(x)

=

∫
Rd

(1 + ‖ξ‖2)−se j2πξ
Tx
[
(1 + ‖ξ‖2)sF (ξ)

]
dξ

=

∫
Rd

e j2πξ
TxF (ξ) dξ = f(x),

where the last line holds by the Fourier inversion formula.
Thus, B−1s is a left-inverse of Bs when restricted to S (Rd).
One can check that S (Rd) ⊂ Bs(Rd) ⊂ S ′(Rd). We can
then extend Bs to act on Bs(Rd) with the same left-inverse
property.

Therefore, we have that Bs : Bs(Rd) → M(Rd) is in-
vertible with inverse given by B−1s : M(Rd) → Bs(Rd).
Moreover, these are isometric isomorphisms by definition of
‖·‖Bs(Rd) in (6). SinceM(Rd) is a Banach space, this says
Bs(Rd) is a Banach space when equipped with the norm in
(6). Moreover, the predual X of Bs(Rd) is given by the image
of C0(Rd) under the mapping B∗s , the adjoint of Bs. This is
summarized in the following diagram:

Bs(Rd) M(Rd)

X C0(Rd)

Bs

B−1
s

dual

B−1∗
s

dual

B∗s

(7)

Finally, it is well-known that the extreme points of the unit ball
inM(Rd) are of the form ±δ(· − ω), ω ∈ Rd (see, e.g., [3,

Proposition 4.1]). Since isometric isomorphisms map extreme
points of unit balls to extreme points of unit balls, it follows
that the extreme points of the unit ball in Bs(Rd) are of the
form B−1s {±δ(· − ω)}(x) = ±(1 + ‖ω‖2)−se j2πω

Tx.

We can now characterize the solution set of (4).

Theorem 2. Let X denote the predual of Bs(Rd), i.e., X ′ =
Bs(Rd). Let H{f} = (〈h1, f〉, . . . , 〈hN , f〉) ∈ RN denote
the measurement process where hn ∈ X , n = 1, . . . , N , i.e.,
the measurements are linear and weak∗ continuous. Then, for
any fixed y ∈ RN , the solution set

V := arg min
f∈Bs(Rd)

‖y −H{f}‖22 + λ‖f‖Bs(Rd), (8)

where λ > 0 is an adjustable regularization parameter, is
nonempty, convex, and weak∗ compact. Moreover, the extreme
points of V are given by functions of the form

s(x) =

K∑
k=1

αk(1 + ‖ωk‖2)−se j2πω
T
kx, (9)

where ωk ∈ Rd, k = 1, . . . ,K, and K ≤ N . The convex hull
of these extreme points is the full solution set.

Proof. The proof follows by using Lemma 1 with [24, Theo-
rems 2 and 3], which characterizes the solution sets of varia-
tional problems in terms of the extreme points of the unit ball
of the regularization term.

Corollary 3. The measurements hn = φ(xn − ·) given by
the convolution kernel φ, i.e., 〈hn, f〉 = (φ ∗ f)(xn), satisfies
the hypotheses of Theorem 2 when its Fourier transform Φ(ω)
decays as ‖ω‖−t2 , where t > −s, as ‖ω‖2 →∞.

Proof. We must show that φ(x0 − ·) ∈ X , for any x0 ∈ Rd.
From the diagram in (7), we see that this amounts to showing
that B−1∗s {φ(x0 − ·)} ∈ C0(Rd). We have

B−1∗s {φ(x0 − ·)}(ξ)

= (1 + ‖ξ‖2)−s
∫
Rd

e j2πξ
Txφ(x0 − x) dx

= (1 + ‖ξ‖2)−se j2πξ
Tx0Φ(ξ).

When Φ satisfies the hypothesis from the corollary state-
ment, the above tends to 0 as ‖ξ‖2 → ∞, and therefore
B−1∗s {φ(x0 − ·)} ∈ C0(Rd).

The decay condition of Corollary 3 says that the convolved
atoms in (9) must vanish at infinity as a function of the fre-
quency parameter ω. When s > 0, the decay condition cap-
tures the ideal sampling setting by choosing φ = δ, the Dirac
impulse, i.e., H{f} = {f(xn)}Nn=1 and so (8) reduces to a
nonparametric least-squares problem. This decay conditions
also captures the impulse response of many physical systems.
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(a) (b) (c)

Fig. 1. In (a) we show the image to be reconstructed. In (b), we
show the magnitude of the DFT of the image. In (c) we show
the measurement of the image from (a) which is downsampled
by a factor of 8 and then corrupted with noise.

(a) (b)

(c) (d)

Fig. 2. In (a) we show the reconstruction from the procedure
in (10) with s = 1. In (b) we show the magnitude of the DFT
of (a). In (c) we show the reconstruction from the procedure
in (11). In (d) we show the magnitude of the DFT of (c).

Remarkably, if we compute the Bs(Rd)-norm of the so-
lution in (9), we find ‖s‖Bs(Rd) = ‖α‖1. Moreover, when
s = 0 and the input dimension d = 1, the problem in (8) re-
duces to the problem of off-the-grid compressed sensing [23].
We also remark that when the measurement operator is as in
Corollary 3, we have 〈hn, s〉 = (φ∗s)(xn). Using the Fourier
transform to compute the convolution, we find

(φ ∗ s)(xn) =

K∑
k=1

αkΦ(ωk)(1 + ‖ωk‖2)−se j2πω
T
kxn ,

where Φ is the Fourier transform of φ.

3. NUMERICAL EXPERIMENTS

In this section we experimentally show the efficacy of the solu-
tions to the variational problem in Theorem 2 in the problem of
image reconstruction from noisy measurements. We discretize
the problem in (8) by working with digital images and noting
that every N ×N digital image f admits a representation in

terms of its discrete Fourier transform (DFT) via

f [n1, n2] =
1

N2

N−1∑
n1=0

N−1∑
n2=0

F [k1, k2] e j2π
k1
N n1e j2π

k2
N n2 ,

where F is the DFT of f . We can consider the following
discretization of the problem in (8):

min
f
‖y −Hf‖22 + λ‖α‖1, (10)

where H is a discrete approximation of H,

α[k1, k2] =

1 +

√∣∣∣∣k1N
∣∣∣∣2 +

∣∣∣∣k2N
∣∣∣∣2
s

F [k1, k2]

denotes the discrete analogue of the coefficients αk in (9), and
‖α‖1 denotes the `1-norm of α viewed as a vector, which is
the discrete analogue of ‖f‖Bs(R2).

Consider reconstructing an image from the observations

y = Hf + ε,

where H is a convolution followed by downsampling and ε is
additive white Gaussian noise. In Fig. 1 we show an example
image to be reconstructed, the magnitude of its DFT, and mea-
surements of the image given by a convolved, downsampled,
and noisy version of the original image. This image was cho-
sen due to its sparse DFT. In Fig. 2 we show how the image is
reconstructed by the procedure in (10) with s = 1. We com-
pare this procedure with the classical Tikhonov regularization
procedure

min
f
‖y −Hf‖22 + λ‖f‖22, (11)

where ‖f‖2 denotes the `2-norm of f viewed as a vector.
The problems in (10) and (11) were solved using proximal
gradient methods [21]. We see in Fig. 2(b) and Fig. 2(d) that
solutions to (10) have sparser DFTs than solutions to (11).
Moreover, the reconstruction in Fig. 2(a) is much better than
the reconstruction in Fig. 2(c).

4. CONCLUSION

In this paper we studied a family of continuous-domain lin-
ear inverse problems with sparse superpositions of decaying
sinusoids as solutions. We studied new forms of regularization
for sparse reconstruction which promote solutions with sparse
Fourier transforms. We numerically illustrated the efficacy of
these new regularization techniques over classical techniques
for image reconstruction. Future work will be directed towards
quantifying the reconstruction error from these regularization
techniques and an exhaustive comparison of this new approach
to to previously studied techniques from sparse reconstruction,
particularly with real-world signals and images.
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