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Abstract

Deep neural networks are not well understood mathematically and their success in
many science and engineering applications is usually only backed by empirical evidence.
In this dissertation, we study neural networks from first principles, beginning with
the simplest architecture of shallow feedforward neural networks. We use tools from
variational spline theory to mathematically understand neural networks. In particular,
we view neural networks as a type of spline. We propose and study a new family
of Banach spaces, which are bounded variation (BV) spaces defined via the Radon
transform. These are the “native spaces” for neural networks. We show that finite-
width neural networks are solutions to data-fitting variational problems over these
spaces. Moreover, these variational problems can be recast as finite-dimensional neural
network training problems with regularization schemes related to weight decay and
path-norm regularization, giving theoretical insight into these common regularization
schemes as well as providing several new, principled forms of regularization for
(deep) neural networks. The Radon-domain BV spaces are also interesting from the
perspective of functional analysis and statistical estimation. The best approximation
and estimation error rates of these spaces are (essentially) independent of the input
dimension, while the best linear approximation and estimation error rates suffer the
curse of dimensionality. The Radon-domain BV spaces contain functions that are very
smooth in all directions except (perhaps) a few directions. The anisotropic nature
of these spaces distinguishes them from classical function spaces. This dissertation
provides a first step towards a mathematical theory of neural networks through the
lens of spline theory and functional analysis.



ix

Bibliographic Note

This dissertation is based on the following papers:

• Rahul Parhi and Robert D. Nowak. 2020. The role of neural network activation
functions. IEEE Signal Processing Letters 27:1779–1783.

• Rahul Parhi and Robert D. Nowak. 2021. Banach space representer theorems
for neural networks and ridge splines. Journal of Machine Learning Research
22(43):1–40.

• Rahul Parhi and Robert D. Nowak. 2022. What kinds of functions do deep
neural networks learn? Insights from variational spline theory. SIAM Journal
on Mathematics of Data Science 4(2):464–489.

• Rahul Parhi and Robert D. Nowak. 2022. Near-minimax optimal estimation
with shallow ReLU neural networks. Submitted. https://arxiv.org/abs/

2109.08844.

• Rahul Parhi and Robert D. Nowak. 2022. On continuous-domain inverse
problems with sparse superpositions of decaying sinusoids as solutions. IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
5603–5607.

Many of the arguments and proofs from these papers have been greatly simplified
and made more concise in this dissertation. To this end, this dissertation often departs
from the presentation in the papers this work is based upon, and corrects technical
errors that arose in the aforementioned papers, although, to quote Carl de Boor, it is
virtually impossible to get anything exactly right.

https://arxiv.org/abs/2109.08844
https://arxiv.org/abs/2109.08844


1

Chapter 1

Introduction

A fundamental problem in many data science1 problems is to reconstruct an unknown
object (signal, image, function, etc.) from possibly noisy measurements. Objects
are typically modeled as functions mapping Rd → R and the problem is typically
formulated as a linear inverse problem. Given f : Rd → R such that f ∈ X, where X

is some function space2, we wish to estimate f from a vector of M measurements

y = H{f}+ ε ∈ RM , (1.1)

where H : X → RM symbolizes the known linear measurement process, ε ∈ RM

denotes a perturbation or noise term, typically assumed to be a vector of independent
and identically distributed (i.i.d.) zero-mean random variables, y ∈ RM denotes the
measured data, and M denotes the total number of measurements.

Given a vector of measurements y ∈ RM , the goal is to construct an estimate
of the data-generating object f ∈ X. This type of problem is referred to as a
linear inverse problem since solving this problem amounts to inverting the linear
measurement operator H. Moreover, this problem is ill-posed since f : Rd → R is a
continuous-domain object being reconstructed from a finite number of measurements.

1Data science is an interdisciplinary field interested in extracting meaningful information from
data and subsumes many classical fields such as signal processing, machine learning, and statistics.

2Typical examples of X are L2-Sobolev spaces, Besov spaces, or bounded variation spaces.



2

If we write H{f} = (〈h1, f〉, . . . , 〈hM , f〉), where 〈·, ·〉 denotes the duality pairing
between X and X′, we see that this problem formulation captures many settings of
interest. Indeed, in magnetic resonance imaging (MRI), the goal is to reconstruct
an image f : R2 → R, from frequency domain measurements, i.e., hm(x) = e− jωT

mx

(the complex exponential) so that H{f} = (f̂(ω1), . . . , f̂(ωM)), where f̂ denotes the
Fourier transform of f and {ωm}Mm=1 ⊂ R2 denotes the frequency domain sampling
locations. In statistics and (supervised) machine learning, the goal is to reconstruct a
function f : Rd → R from point evaluation (or ideal sampling) measurements, i.e.,
hm(x) = δ(x− xm) (the Dirac impulse) so that H{f} = (f(x1), . . . , f(xM)), where
{xm}Mm=1 ⊂ Rd denotes the (spatial domain) sampling locations.

Classically, this type of problem was solved using spline, wavelet, or kernel based
approaches, which are are well understood mathematically. The advent of the deep
learning era in the last decade, has shown that deep neural network based approaches
have outpeformed many state-of-the-art methods in a variety of signal processing and
machine learning tasks such as image classification (Krizhevsky et al., 2012), speech
recognition (Hinton et al., 2012a), and inverse problems in imaging (Jin et al., 2017;
Ongie et al., 2020b).

Unfortunately, deep neural network based approaches are not well understood
mathematically and usually only backed by empirical validation. In this dissertation,
we study neural networks from first principles, beginning with the simplest architecture
of shallow feedforward neural networks, which are superpositions of ridge functions.
The goal of this dissertation is to develop a mathematical theory for neural networks.
We show that neural networks can be viewed as a type of spline, what we call a
(deep) ridge spline, and use tools from spline theory to mathematically understand
neural networks. As a result, we propose and study a new family of Banach spaces,
which are bounded variation (BV) spaces defined in the Radon domain, which are
the native spaces of (sparse) ridge splines. The remainder of this chapter recounts
the history of the problem of reconstructing an object from measurements leading up
to the era of deep learning. At the end of this chapter, we provide a roadmap of the
remaining chapters and summarize the contributions of this dissertation.
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1.1 Atomic Decompositions

The problem of efficiently reconstructing an object f ∈ X hinges on choosing a
representation system for X. This is equivalent to finding a dictionary of atoms
D := {ψn}n∈Z, where the atoms ψn ∈ X, so that we have the exact decompostion of
an object f ∈ X as

f =
∑
n∈Z

anψn,

for some sequence of coefficients {an}n∈Z, or an approximate decomposition

f =
∑
n∈J

anψn + eN ,

where J ⊂ Z is an index set such that |J| = N and eN is the error or residual
which decays at some rate as N → ∞ in some suitable norm. Choosing the right
representation system allows for more accurate estimation and reconstruction of the
data-generating object (Chen et al., 2001).

This is a classical problem in signal processing, dating back to early work in
speech and radar signal processing. Such signals have naturally occurring oscillatory
behavior. As a result, decomposing these signals into superpositions of sinusoids, e.g.,
D =

{
x 7→ e j2πnx

}
n∈Z, the traditional Fourier dictionary for 1-periodic signals, was

widely successful. Unfortunately, Fourier-type dictionaries fail to efficiently capture
objects that are spatially inhomogeneous or exhibit singularities, which are properties
that arise in many real-world objects (e.g., the edges in an image). This issue can be
explicitly seen via the Gibbs phenomenon.

To this end many new representation systems were proposed in the 1980s and
1990s based on wavelets (Rioul and Vetterli, 1991; Daubechies, 1992), multiresolution
analysis (Mallat, 1989), and splines (Unser, 1999). The common goal of these represen-
tation systems is to efficiently decompose objects with certain regularity properties3.
More generally, the field of applied harmonic analysis studies representation systems
which provide decompositions for functions with certain regularity (Kutyniok, 2008).

3The regularity of an object is governed by what function space it lives in.
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1.2 The Sparsity Revolution

Suppose D = {ψn}n∈Z is a representation system for X. A common approach to
reconstructing an object f ∈ X from a vector of measurements as in (1.1) is to
consider the following regularized least-squares problem

min
a∈`p(Z)

∥∥∥∥∥y − H

{∑
n∈Z

anψn

}∥∥∥∥∥
2

2︸ ︷︷ ︸
data fidelity

+λ ‖a‖pp︸︷︷︸
regularization

, (1.2)

where λ > 0 is an adjustable hyperparameter which controls the strength of the
regularization term4. The purpose of the regularization term is to ensure that
the problem is well-posed. The choice of p = 2 in (1.2) corresponds to the well-
known Tikhonov regularization, first proposed by Tikhonov (1963) in the context
of regularizing solutions to integral equations. While this form of regularization
was state-of-the art in the 20th century for many object reconstruction tasks, the
dawn of the 21st century revealed that the idea of sparsity, i.e., p = 1, plays a key
role in object reconstruction (Bruckstein et al., 2009; Elad, 2010). It has been seen
that many real-world objects are sparse in certain dictionaries, e.g., natural images
are sparse in certain wavelet dictionaries, which is the key idea behind JPEG2000
compression (Taubman and Marcellin, 2012) and magnetic resonance images are
sparse in some transform domain, which is the key idea behind sparse MRI (Lustig
et al., 2007).

By leveraging the idea of sparsity, many real-world objects can be reconstructed
with much better accuracy than classical, Tikhonov-type, techniques. This paradigm
is supported by the theory of compressed sensing (Candès et al., 2006; Donoho,
2006; Candès and Romberg, 2007). The problem in (1.2) with p = 1 is a discrete-
domain notion of sparsity in that the sparsity is enforced on the discrete sequence of
expansion coefficients. Moreover, the formulation in (1.2) referred to as the synthesis

4For large λ, the solutions to the problem in (1.2) will favor more regular solutions with a smaller
`p-norm of coefficients, while for small λ, the solutions to the problem in (1.2) will favor solutions
that better match the data.
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formulation of the problem since the solution is explicitly synthesized from the
dictionary D = {ψn}n∈Z. In particular, when p = 1 and {ψn}n∈Z corresponds to an
orthogonal wavelet basis, the solutions to the problem in (1.2) correspond to the
well-known wavelet shrinkage estimator of Donoho and Johnstone (1998), which is a
minimax optimal estimator when the data-generating object lies in the scale of Besov
spaces and the measurements are noisy point evaluations.

An alternative formulation of reconstruction problem is the so-called analysis
formulation, where we consider solutions to the following regularized least-squares
problem

min
f∈X
‖y − H{f}‖2

2 + λ|f |pX, (1.3)

where λ > 0 and p ∈ [1,∞) are adjustable hyperparameters and |·|X is a (semi)norm
that defines the native space X. The regularization term in (1.3) typically takes the
form

|f |pX = ‖L f‖M, (1.4)

where L is usually a pseudodifferential operator and the M-norm denotes the total
variation norm (in the sense of measures) and is the continuous-domain analogue of
the `1-norm5. The last few years has led to a line of work characterizing the solutions
to the problem in (1.3). In particular, it has been shown that solutions to (1.3) can
be expanded in terms of a dictionary matched to the regularization term (Boyer et al.,
2019; Bredies and Carioni, 2020; Unser, 2021; Unser and Aziznejad, 2022). When the
regularization term takes the form in (1.4), the operator L analyzes the function f
into its coefficients in the dictionary, and so the formulation in (1.3) is referred to as
the analysis formulation of the problem. This formulation is also referred to as the
variational formulation of the problem since the optimization problem being studied
is a variational problem (in the sense of the calculus of variations).

5The space (M(Rd), ‖·‖M) is the Banach space of finite Radon measures on Rd. See Chapter 2,
Section 2.1 for its precise definition.
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For example, when X is the bounded variation (BV) space on R, defined by6

BV(R) := {f ∈ S′(R) : ‖D f‖M <∞},

where S′(R) denotes the space of tempered distributions on R and D denotes the
distributional derivative operator. It can be shown under mild conditions7 on the
measurement operator that the solution set to the variational problem

V := arg min
f∈BV(R)

‖y − H{f}‖2
2 + λ‖D f‖M, (1.5)

where λ > 0 is an adjustable hyperparameter, is nonempty, convex, and weak∗

compact. The extreme points of V are given by piecewise constant functions of the
form

s(x) =
N∑
n=1

anu(x− tn) + c, (1.6)

where u is the unit step function8, {an}Nn=1 ⊂ R \ {0}, {tn}Nn=1 ⊂ R, c ∈ R, and
N < M . The convex hull of these extreme points is the full solution set (Fisher
and Jerome, 1975; Unser et al., 2017). What is remarkable about this result is that
the solution set to the variational problem in (1.5) is completely characterized by
piecewise constant functions where the number of jumps (or knots) N is strictly
less than the number of measurements M . This is due to the sparsity-promoting
nature of the M-norm. Moreover, the regularization term ‖D f‖M =: TV(f) is exactly
the total variation (TV) of the function f , and the problem in (1.5) corresponds to
well-known technique of TV denoising (Rudin et al., 1992). In this setting we see

6Note that the space BV(R) we consider is not the usual space of bounded variation functions
studied by mathematicians. The typical bounded variation space on R is the space BV(R) :=
BV(R) ∩ L1(R), which is slightly smaller since it does not contain constant functions. We use this
non-standard notation for notational convenience.

7In particular, that the measurement operator is weak∗ continuous on BV(R).
8The unit step function u(x) is 0 for x < 0 and 1 for x ≥ 0.
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that the operator D analyzes functions of the form in (1.6) since

D s =
N∑
n=1

anδ(· − tn), (1.7)

where δ is the Dirac impulse. From (1.6) and (1.7), we see that the dictionary matched
to the regularization term f 7→ ‖D f‖M is exactly {u(· − t)}t∈R, the dictionary of
shifted Green’s functions of D. The additional constant c ∈ R that appears in (1.6)
lies in the null space of D. Another way to see that sparsity-promoting nature of the
M-norm is to notice that

‖D s‖M =
N∑
n=1

|an| = ‖a‖1.

Thus, the effect of the regularization term in (1.5) imposes sparsity in the expansion
coefficients with respect to the dictionary {u(· − t)}t∈R, similar to the synthesis
formulation of the problem.

If we replace the native space in (1.5) with the kth-order variant of the BV space
defined by

BVk(R) :=
{
f ∈ S′(R) : ‖Dk f‖M <∞

}
, (1.8)

where k ∈ N, Dk is the kth-order derivative operator, and replace the regularization
term by TVk(f) := ‖Dk f‖M, the kth-order total variation of f , the solution set is
completely characterized by splines9 of degree k−1 (sometimes referred to as splines of
order k), where the number of knots is strictly less than the number of measurements
M (Fisher and Jerome, 1975; Unser et al., 2017). These spline solutions are the
well-known locally adaptive (or sparse adaptive) splines of Mammen and van de Geer
(1997), which are minimax optimal estimators when the data-generating object lies
in the kth-order BV space and the measurements are noisy point evaluations.

9See Section 1.5 for the precise definition of a spline.
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1.2.1 The Curse of Dimensionality

Although sparsity-promoting methods, in both the discrete- and continuous-domains,
were revolutionary in both theory and practice, many techniques suffer from the curse
of dimensionality. In particular, sparsity-promoting techniques based on splines and
wavelets were fruitful for processing and reconstructing signals, images, and videos
(i.e., low-dimensional objects). However, many problems in data science are inherently
high-dimensional and such methods cannot efficiently estimate high-dimensional
objects. Indeed, many multivariate generalizations of splines and wavelets hinge on
tensor product constructions which become computationally intractable for dimensions
larger than, say, ten. Moreover, the number of measurements needed to estimate an
ε-close approximation to the data-generating object grows exponentially with the
input dimension10. As a result, these sparsity-promoting techniques that were fruitful
in many signal processing (low-dimensional) problems did not gain popularity for
high-dimensional data science problems.

1.3 Hilbert Spaces and Kernel Methods

In order to circumvent the curse of dimensionality, the 1990s led to a (re)emergence
of Hilbert space techniques (i.e., Tikhonov regularization methods) from the machine
learning community. The fundamental result is the so-called representer theorem
which characterizes the solutions to variational problems as in (1.3) when X is a
Hilbert space and |·|pX is the squared Hilbert norm (Wendland, 2004, Theorem 16.1).
In particular, let H be a Hilbert space and let H : f 7→ (〈h1, f〉, . . . , 〈hM , f〉) ∈ RM

be a continuous measurement operator on H. Then, the representer theorem states
that there exists a unique solution s ∈ H to the variational problem

s = arg min
f∈H

‖y − H{f}‖2
2 + λ‖f‖2

H, (1.9)

10This can be seen explicitly via the approximation and estimation error rates with wavelets for
multivariate function spaces (see, e.g., Candès, 2003, Equation 4.3).
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that admits the representation

s =
M∑
m=1

amh
]
m,

where h]m is the unique Riesz representer of hm, i.e., 〈hm, f〉 = 〈h]m, f〉H for all f ∈ H,
where 〈·, ·〉H denotes the inner product of H.

Of particular interest to the machine learning community is the setting in which
H is a Hilbert space on Rd and H is the point evaluation (or ideal sampling) operator,
i.e., H : f 7→ (〈δ(· − x1), f〉, . . . , 〈δ(· − xM), f〉) = (f(x1), . . . , f(xM)) ∈ RM , for
some set of sampling locations {xm}Mm=1 ⊂ Rd. In this case, we are interested in
Hilbert spaces in which the point evaluation operator is continuous. This corresponds
to H being a so-called reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950). In
this case, we have that the Riesz representer of δ(· − xm) is the so-called reproducing
kernel of H given by a function k(·,xm) ∈ H. With the property

〈δ(· − xm), f〉 = 〈k(·,xm), f〉H = f(xm)

for all f ∈ H. The property in the above display is the so-called reproducing property of
k(·, ·). The reproducing kernel is also symmetric and positive semidefinite (Schölkopf
and Smola, 2002). In this setting, we have that the unique solution to (1.9) admits
the representation

s =
M∑
m=1

amk(·,xm).

In other words, the solution is a linear expansion of the reproducing kernel centered
at the sampling locations. The utility of the RKHS representer theorem is that the
infinite-dimensional variational problem over H can be recast as a finite-dimensional
optimization problem by plugging in the representation in the above display into the
variational problem. The resulting finite-dimensional optimization problem is

min
a∈RM

‖y −Ka‖2
2 + λaTKa,
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were K ∈ RM×M is the so-called kernel Gram matrix, where [K]m,n = k(xm,xn). This
optimization problem is of size M , independent of the input dimension d, and can
be easily solved numerically. This technique is the so-called kernel trick of machine
learning.

Remark 1.1. When λ ↓ 0, the RKHS representer theorem recovers many classical
results from signal processing including the sampling theorem for bandlimited signals
as well as more general sampling theorems in shift-invariant spaces (Unser, 2000).

Remark 1.2. Hilbert space techniques and, in particular, kernel methods also hold
when the norm in (1.9) is replaced with a seminorm (Unser and Aziznejad, 2022). In
fact, the earliest instances of kernel methods are due to Schoenberg (1964); de Boor
and Lynch (1966), which consider the minimization of L2-Sobolev seminorms subject
to interpolation constraints and shows that the unique solution is a spline with
knots at the sampling locations. These splines are the well-known smoothing splines
popularized in the statistics community by Kimeldorf and Wahba (1970a,b, 1971).

1.3.1 Drawback of Kernel Methods

Although kernel methods are able to circumvent the curse of dimensionality from
a computational perspective, they suffer from the same phenomenon observed in
the signal processing community before the sparsity revolution: kernel expansions
fail to capture objects that are spatially inhomogeneous or exhibit singularities. In
other words, they only “work” when the data-generating function is very regular in
all dimensions and does not exhibit anisoptropy. This is due to the fact that kernel
methods are special cases of Tikhonov regularization since every Hilbert space is
(topologically) isomorphic to an L2-space.

To illustrate this phenomenon explicitely, we consider the problem of estimating
(or reconstructing) a signal in BV2[0, 1], a non-Hilbertian Banach space, from noisy
point evaluation measurements. The space BV2[0, 1] is defined as

BV2[0, 1] :=
{
f ∈ D′[0, 1] : ‖D2 f‖M <∞

}
,
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where D′[0, 1] is the space of distributions on [0, 1] and the M-norm is on [0, 1]. This
space is simply the restriction of BV2(R) (defined in (1.8)) to [0, 1]. We are restricting
our setting to a domain since we will later quantify the estimation (or reconstruction)
error of a signal with respect to the L2-norm on [0, 1]. In particular, consider the
problem of estimating the triangular waveform in blue in Figure 1.1 from the noisy
point evaluation measurements seen in red in Figure 1.1.

Figure 1.1: Triangular waveform (blue) contained in BV2[0, 1] and noisy point evalu-
ation measurements (red).

If the triangular waveform is the function f ∈ BV2[0, 1], our measurements take
the form

ym = f(xm) + εm, m = 1, . . . ,M,

where {xm}Mm=1 ⊂ [0, 1] and {εm}Mm=1 are i.i.d. N(0, 1) random variables. It is easy
to see that this function is in BV2[0, 1] since D2 f takes the form of a finite impulse
train. We consider three approaches to estimate this signal:

1. The cubic smoothing spline, a kernel method;

2. The Daubechies 3 wavelet shrinkage estimator, a sparsity-promoting technique;

3. The linear locally adaptive spline, a sparsity-promoting technique.

Smoothing splines. The cubic smoothing spline is the unique solution to the
variational problem

min
f∈H2[0,1]

M∑
m=1

|ym − f(xm)|2 + λ‖D2 f‖2
L2 , (1.10)
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where the native space H2[0, 1] is the second-order L2-Sobolev space defined by11

H2[0, 1] :=
{
f ∈ D′[0, 1] : ‖D2 f‖2

L2 <∞
}
.

Clearly the triangular waveform is not in H2[0, 1] (since the Dirac impulse is not
square integrable). Therefore, intuitively, we would expect the cubic smoothing spline
to stuggle at estimating the triangular waveform from measurements. Indeed, this is
illustrated in Figure 1.2. We see that even if we try to adjust the hyperparameter λ in
(1.10), the cubic smoothing spline struggles to estimate the data generating function.
For small λ, we see in Figure 1.2(a) that the cubic smoothing spline undersmooths the
low variation portion of the data. For large λ, we see in Figure 1.2(b) that the cubic
smoothing spline oversmooths the high variation portion of the data. The underlying
issue is that the triangular waveform is spatially inhomogeneous and the smoothing
spline estimate cannot adapt to spatial inhomogeneity of the data-generating function.

(a) Cubic smoothing spline solution to (1.10) with small λ.

(b) Cubic smoothing spline solution to (1.10) with large λ.

Figure 1.2: Cubic smoothing spline estimation of triangular waveform.

11The usual definition of H2[0, 1] is all f ∈ D′[0, 1] such that f,D f,D2 f ∈ L2[0, 1]. One can
easily verify that the definitions are equivalent.
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Wavelet shrinkage. The Daubechies 3 wavelet shrinkage estimator is synthesized
from any solution to the optimization problem

min
a∈`1(Z)

M∑
m=1

∣∣∣∣∣ym −∑
n∈Z

anψn(xm)

∣∣∣∣∣
2

+ λ‖a‖1,

where {ψn}n∈Z is an ordering of the Daubechies 3 wavelet basis, which essentially
corresponds to translates and dilates of the Daubechies 3 mother wavelet shown in
Figure 1.3. The number 3 refers to the number of vanishing moments of the mother
wavelet, which must be larger than 2 since the goal is to estimate a function in
BV2[0, 1]. We also remark that there are many technical nuances when working
with wavelet systems on an interval, which we do not mention and refer the reader
to Cohen et al. (1993) for more details.

Figure 1.3: The Daubechies 3 mother wavelet.

In Figure 1.4 we see the result of estimating the triangular waveform from
measurements. In particular, we see that the estimate is able to automatically
adapt to the spatial inhomogeneity of the data-generating function.

Figure 1.4: Daubechies 3 wavelet shrinkage estimation of triangular waveform.
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Locally adaptive splines. The linear locally adaptive spline is any linear spline
solution to the variational problem

min
f∈BV2[0,1]

M∑
m=1

|ym − f(xm)|2 + λ‖D2 f‖M.

Since the native space for linear locally adaptive splines is BV2[0, 1], we expect that
the linear locally adaptive spline will automatically adapt to the spatial inhomogeneity
of the data-generating function and estimate the triangular waveform well. Indeed,
this is illustrated in Figure 1.5.

Figure 1.5: Linear locally adaptive spline estimation of triangular waveform.

Minimax rates. We can explicitly quantify the mean-squared error of the three
approaches used to estimate the triangular waveform. Suppose that the sampling
locations {xm}Mm=1 are nicely distributed in [0, 1] (e.g., uniformly distributed or equally
spaced) and let fM,sspl, fM,wav, fM,laspl denote the cubic smoothing spline, Daubechies
3 wavelet shrinkage, and linear locally adaptive spline estimators for the triangular
waveform f ∈ BV2[0, 1] computed from M point evaluation measurements. Assuming
that ‖D2 f‖M = TV2(f) ≤ C for some universal constant C, It can be shown that:

• E‖f − fM,sspl‖2
L2 /M−3/4;

• E‖f − fM,wav‖2
L2 /M−4/5;

• E‖f − fM,laspl‖2
L2 /M−4/5,

where E is the expectation operator, / hides universal constants and logarithmic (in
M) factors, and the L2-norm is on [0, 1]. We refer the reader to Mammen and van de
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Geer (1997); Donoho and Johnstone (1998); Tibshirani (2014) for these mean-squared
error rates.

Moreover, it can be shown that no estimator can achieve a mean-squared error
rate better (up to logarithmic factors) than that of the wavelet shrinkage and locally
adaptive spline estimators for functions in BV2[0, 1]. This is quantified via the
so-called minimax rate for BV2[0, 1] (Donoho and Johnstone, 1998), which says

inf
fM

sup
f∈BV2[0,1]
TV2(f)≤C

E‖f − fM‖2
L2 �M−4/5,

where the inf is over all functions of the M data and � denotes equivalence up to
universal constants.

Therefore, we see that the wavelet shrinkage and locally adaptive spline estimators
are (up to logarithmic factors) minimax optimal for estimating functions in BV2[0, 1]

from noisy point evaluation measurements. Intuitively, the smoothing spline estimator
fails to be minimax optimal since its native space is strictly smaller than BV2[0, 1].
Indeed, an application of Hölder’s inequality shows H2[0, 1]

c.
↪→ BV2[0, 1], where

c.
↪→ denotes a continuous embedding. On the other hand, the wavelet shrinkage
estimator is designed for estimating functions in Besov spaces, and it is well-known
that B2

1,1[0, 1]
c.
↪→ BV2[0, 1]

c.
↪→ B2

1,∞[0, 1], where Bs
p,q[0, 1] is the usual Besov space on

[0, 1] (see, e.g., Peetre, 1976). Finally, the native space for the locally adaptive spline
estimator is exactly BV2[0, 1], so it is unsurprising it performs well at estimating
functions from BV2[0, 1].

The fundamental difference between the smoothing spline estimator and the
wavelet shrinkage or locally adaptive spline estimator is that the smoothing spline
estimator is a linear function of the data12, while the wavelet shrinkage and locally
adaptive spline estimators are nonlinear functions of the data. All kernel (and more
generally Hilbert space) methods are linear methods and it is well-known from the
wavelet literature that linear methods cannot estimate functions that are spatially

12A linear method is an the estimator constructed via a linear mapping T : RM → BV2[0, 1] :

(y1, . . . , yM ) 7→ flinear, which can depend on the sampling locations {xm}Mm=1 in an arbitrary way.
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inhomogeneous or exhibit singularities, while nonlinear methods can. As we will later
see in this dissertation, neural network methods are nonlinear methods.

1.4 Neurons and Neural Networks

Artificial neural networks are a representation system inspired by how biological
brains process information. The fundamental building block of an artificial neural
network is an artificial neuron, inspired by the biological neuron (McCulloch and
Pitts, 1943; Rosenblatt, 1958). A biological neuron is depicted in Figure 1.6.

dendrites

axon
axon terminals

Figure 1.6: A biological neuron.

In a biological neuron, electrical signals are recieved at the dendrites and weighted
according to their importance. Once the sum of the weighted input signals surpass
some threshold (or bias), the neuron fires in which a firing signal sent down the
axon. This firing signal can then be fed to other neurons from the axon terminals.
Mathematically, if we have d input signals, the input to the neuron can be viewed as
a vector x ∈ Rd. We can take a weighted sum of these input signals by taking the
inner product of x ∈ Rd with a weight vector w ∈ Rd since

wTx = w1x1 + · · ·+ wdxd.

Once the quantity wTx surpasses some threshold or bias b ∈ R, the neuron can fire.
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Therefore, we can model a biological neuron as the function

x 7→

1, if wTx ≥ b

0, else,

where an output of 1 indicates that the neuron has fired. Written more compactly, an
artificial neuron is the function x 7→ u(wTx− b), where u is the unit step function
used in (1.6). More generally, we can replace u with an arbitrary function ρ : R→ R
and so an artificial neuron is a function mapping Rd → R that takes the form

x 7→ ρ(wTx− b), (1.11)

where ρ is referred to as the activation function. Functions that take the form in
(1.11) are referred to as ridge functions. In the remainder of this dissertation, we
refer to artificial neurons simply as neurons and artificial neural networks simply as
neural networks.

Figure 1.7: A shallow neural network.

The so-called single-layer perceptron, or shallow neural network, is a superposition
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of neurons as in (1.11) and is a function mapping Rd → R that takes the form

x 7→
N∑
n=1

vnρ(wT
nx− bn), (1.12)

where {vn}Nn=1 ⊂ R are the weights of the outputs of the neurons, {wn}Nn=1 ⊂ Rd are
the weights of the inputs of the neurons, {bn}Nn=1 ⊂ R are the biases of the neurons,
and the number N ∈ N is the number of neurons in the network and also corresponds
to the width of the network. Such neural networks are often depicted with diagrams
as in Figure 1.7. The nodes in Figure 1.7 represent either inputs, outputs, or neurons
in the neural network and the edges between nodes represent the weights.

Figure 1.8: A deep neural network.

The so-called multi-layer perceptron, or deep neural network, corresponds to
compositions of function as in (1.12), and is a mapping Rd → R typically written in
the form 

x(0) := x,

x(`) := ρ(A(`−1)x(`−1) − b(`−1)), ` = 1, . . . , L,

x(L) := a(L)Tx(L),

(1.13)
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where ρ denotes applying the activation function ρ component-wise, A(0) ∈ RN(1)×d,
A(`) ∈ RN(`+1)×N(`) , ` = 1, . . . , L−1, a(L) ∈ RN(L) , and b(`) ∈ RN(`+1) , ` = 0, . . . , L−1.
The functional mapping of a deep neural network is then the function x 7→ x(L).
The matrices

{
A(`)

}L
`=1

corresponds to the weights of the inputs and outputs of
the neurons, the vectors

{
b(`)
}L−1

`=1
correspond to the biases of the neurons, and the

numbers
{
N (`)

}L
`=1

denote the widths of the layers. The number of layers is referred
to as the depth of the neural network. A deep neural network diagram is depicted in
Figure 1.8, using the same conventions as in Figure 1.7. One could easily make (1.13)
vector-valued by replacing the vector a(L)T with a matrix A(L).

The choice of activation function plays an important role in the efficacy of neural
networks. Traditionally, the sigmoid function defined by

σc(x) :=
1

1 + e−cx
,

where c > 0, was the standard choice of activation function. This function is a smooth
approximation of the unit step function. In particular, we have that

lim
c→∞

σc(x) = u(x), x ∈ R \ {0}.

Recently, however, the rectified linear unit (ReLU) activation function defined by

ReLU(x) := x+ :=

x, if x ≥ 0,

0, else.
(1.14)

has become the preferred choice. The initial motivation of the ReLU activation
function was to promote sparsity in the sense of decreasing the number of active
neurons (Glorot et al., 2011). It has also been empirically observed that the training
of neural networks is much faster with ReLU activations over the traditional sigmoid
activation function (LeCun et al., 2015).
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1.4.1 Breaking the Curse of Dimensionality

There are many intriguing properties of neural networks, particularly that they appear
to break the curse of dimensionality. This was, perhaps, first observed in the seminal
work of Barron (1993, 1994) studying the approximation (and estimation) properties of
shallow sigmoid neural networks. The fundamental result he showed is that functions
mapping Rd → R that satisfy certain decay properties of their Fourier transform can
be approximated by a shallow sigmoidal network with N neurons with an L2-error
(on the unit ball in Rd) at a rate that decays like N−1/2, independent of the input
dimension d. This result hinges on results due to Maurey and Pisier, written down by
Pisier (1981), regarding dimension-free approximation rates in certain Banach spaces.

The seminal work of Barron (1993, 1994) started a line of research studying
the approximation rates of functions in so-called variation spaces by shallow neural
networks with a variety of different activation functions (Kurková and Sanguineti,
2001; Mhaskar, 2004; Bach, 2017; Siegel and Xu, 2021a). The property that these
spaces seem to break the curse of dimensionality makes them interesting from a data
science perspective. In particular, these spaces are mixed variation spaces, a term
coined by Donoho (2000) to refer to function spaces that contain functions that are
isotropic and very regular in all directions as well as functions that are anisotropic
and very unregular in only a few directions. The fact that the approximation rates
in these spaces do not grow with the input dimension says that they are “small” in
comparison to classical function spaces such as Sobolev, Besov, or Triebel–Lizorkin
spaces whose approximation rates grow exponentially with dimension. We refer the
reader to the survey of DeVore et al. (2021) for an up to date summary on the
approximation theory with neural networks, including deep neural networks.

1.4.2 Neural Network Training

Fitting data with a (deep) neural network is typically an ill-posed problem, particularly
when the neural network is overparameterized, i.e., there are more parameters than
data. In order to circumvent this, some form of regularization is typically imposed
when fitting data with a neural network. Let fθ denote a deep neural network as
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in (1.13), where θ denotes all the neural network parameters. Fitting a data set
{(xm, ym)}Mm=1 ⊂ Rd × R with a deep neural network amounts to finding a solution
to the optimization problem

min
θ∈Θ

M∑
m=1

|ym − fθ(xm)|2 + λC(θ), (1.15)

where λ > 0 is an adjustable hyperparameter, Θ denotes the space of all neural
network parameters, and the regularizer C : Θ→ [0,∞) denotes a measure of the
capacity or complexity of the neural network parameterized by θ ∈ Θ. Typical choices
of C(·) correspond to norms of the parameter vector θ. The act of training a neural
network corresponds to a numerical method, typically a gradient based method, that
attempts to find a solution to the optimization in (1.15). A common choice for C(·) is
to consider the squared `2-norm (i.e., the squared Euclidean norm) of all the weights
in the network. This form of regularization corresponds to training a neural network
with weight decay (Krogh and Hertz, 1992).

1.5 Splines: A Perfect Fit for Data Science

The spline was invented by Schoenberg (1946). In their simplest form, splines are
piecewise polynomial functions with pieces that are smoothly connected together.
The joining points of the pieces are called knots. For a spline of order k ∈ N, each
piece is a polynomial of degree k− 1, and the spline and its derivatives are continuous
up to order k − 2 at the knots. We see that a function f : R → R is a polynomial
spline of order k if and only if

Dk f =
N∑
n=1

anδ(· − tn), (1.16)

where Dk is the kth-order distributional derivative operator, {an}Nn=1 ⊂ R is a sequence
of weights, and {tn}Nn=1 ⊂ R are the knots of the spline. The function Dk f is referred
to as the innovation of the spline. We see that splines are continuous-domain functions
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that are intrinsically sparse and, in particular, have a finite rate of innovation (Vetterli
et al., 2002). Since the order of the differential operator that uncovers the innovation
of the spline is of order k, a spline of degree k − 1 is referred to as a spline of order
k. By associating a spline to an operator as in (1.16), we see that we can define
generalized splines via the following definition.

Definition 1.3 (see, e.g., Unser et al. (2017, Definition 2)). A function f : Rd → R
of slow growth13 is said to be an L-spline if

L f =
N∑
n=1

anδ(· − tn),

where L is a pseudodifferential operator with a finite-dimensional null space, {an}Nn=1 ⊂
R is a sequence of weights, and {tn}Nn=1 ⊂ Rd are the locations of the knots of the
spline. The function L f is referred to as the innovation of f .

We see that Definition 1.3 recovers the polynomial splines when L = Dk. In this
dissertation, we will mostly be interested Dk-splines and variants. Definition 1.3
implies that a Dk-spline admits the representation

x 7→
N∑
n=1

anρk(x− tn) +
k−1∑
`=0

c`x
`

︸ ︷︷ ︸
=: qk(x)

,

where ρk is a Green’s function (or fundamental solution) of Dk, e.g., choose

ρk(x) :=
1

2
sgn(x)

xk−1

(k − 1)!
, (1.17)

13The growth restriction of the function is to ensure that the null space of L is finite-dimensional.
This is a non-issue in the univariate case, but in the multivariate case, it is difficult to ensure that
the null space of an operator is finite-dimensional without a growth restriction. We refer the reader
to Unser et al. (2017) for more details.
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or

ρk(x) :=
xk−1

+

(k − 1)!
,

and qk lies in the null space of Dk (polynomials of degree strictly less than k). The
functions in the above display are referred to as truncated power functions. Splines
have always been fundamentally connected to data science, ranging from classical
techniques such as kernel methods, to more modern techniques such as wavelets and
neural networks. In the remainder of this section, we summarize how splines provide
a unifying framework for data science techniques and are therefore a perfect fit for
data science.

1.5.1 Splines and Kernel Methods

As mentioned in Remark 1.2 in Section 1.3, the precursor to kernel methods were
smoothing splines, which are the unique solution to the data-fitting variational
problem

min
f∈BLk(R)

M∑
m=1

|ym − f(xm)|2 + λ‖Dk f‖2
L2 , (1.18)

where the native space BLk(R) denotes the kth-order Beppo-Levi space defined by14

BLk(R) :=
{
f ∈ S′(R) : ‖Dk f‖2

L2 <∞
}
.

The unique solution to (1.18) is a D2k-spline with knots at the sampling locations
{xm}Mm=1. This particular spline is known as a smoothing spline (Unser and Blu, 2005).
Kernel methods consider problems as in (1.18), but instead consider data-fitting
variational problems over abstract (semi)reproducing kernel Hilbert spaces.

14The Beppo-Levi space BLk(R) is sometimes mistakenly referred to as the homogeneous Sobolev
sapce Ḣk(R) since both are defined as functions in which the homogeneous Sobolev seminorm
f 7→ ‖Dk f‖L2 is finite, but we remark that homogeneous function spaces are typically viewed as
subspaces of quotient space S′(R)/P(R), where P(R) is the space of polynomials on R. If we consider
the restriction of functions in BLk(R) to an interval, say, [0, 1] the resulting space is the usual
Sobolev space Hk[0, 1]. We refer the reader to Wendland (2004, Chapter 10) for more details about
Beppo-Levi spaces.
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1.5.2 Splines and Wavelets

Wavelets were revolutionary in data science, particularly in sparse signal processing,
due to the idea of wavelet shrinkage by Donoho and Johnstone (1998). Splines and
wavelets have always been fundamentally connected due to the self-similarity and
multiresolution properties that arise in spline and wavelet atoms. In particular,
wavelet systems can be constructed from spline functions resulting in systems of
spline wavelets, which have many unique properties over more conventional wavelet
systems. We refer the reader to the article of Unser (1997) for reasons to use spline
wavelets. Moreover, the core of every wavelet system is in fact a spline function
since every scaling function can be expressed as the convolution of a B-spline and a
distribution (Unser and Blu, 2003).

1.5.3 Splines and Neural Networks

As we saw in Section 1.4, a (deep) neural network is defined via compositions of affine
functions and nonlinearities via the activation function, where the standard choice of
activation function is the ReLU defined in (1.14). The ReLU activation function is
exactly the second-order truncated power function, which is the fundamental building
block for linear splines. Therefore we immediately see a connection between (linear)
splines and neural networks.

A very special property of deep ReLU networks is that their input-output relation
is continuous piecewise-linear (CPwL) (Montufar et al., 2014). The reverse is also
true in that any CPwL function can be represented with a sufficiently wide and deep
ReLU network (Arora et al., 2018). Thus, one can interpret a deep ReLU network
as a multivariate linear spline. This connection between deep neural networks and
splines has been observed by a number of authors (Poggio et al., 2015; Unser, 2019;
Balestriero and Baraniuk, 2020). In particular, one can view a deep neural network
as a hierarchical or deep spline to emphasize the compositional nature of deep neural
networks.

Another remarkable observation, perhaps first made by Savarese et al. (2019) is
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that shallow univariate ReLU networks trained with weight decay15 are linear locally
adaptive splines. This observation can be deduced quite easily. Indeed, consider
fitting the data set {(xm, ym)}Mm=1 ⊂ R× R and recall that a linear locally adaptive
spline is any spline solution to the variational problem

min
f∈BV2(R)

M∑
m=1

|ym − f(xm)|2 + λ‖D2 f‖M.

Since the extreme points of the solution set to the above display are linear splines
where the number of knots is strictly less than the number of data, we know there
exists a solution to the above display of the form

flaspl(x) =

N0∑
n=1

an ReLU(x− tn) + c1x+ c0,

for some N0 < M . A direct calculation shows that

‖D2 flaspl‖M =

N0∑
n=1

|an| = ‖a‖1.

Therefore, if we consider data-fitting over all linear splines with at least N0 knots,
where we regularize the quantity ‖a‖1, any solution will be a linear locally adaptive
spline. Next, notice that a shallow ReLU network can be written as

fnn(x) =
N∑
n=1

vn ReLU(wnx− bn) + c1x+ c0︸ ︷︷ ︸
(∗)

,

where the additional affine function that appears in (∗) is referred to as a skip
connection in neural network parlance (He et al., 2016). From Definition 1.3 we see

15In particular, any global minimizer to the optimization problem which corresponds to training
a shallow univariate ReLU network with weight decay.
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that fnn is a linear spline since

D2 fnn =
N∑
n=1

vn|wn|δ
(
· − bn

wn

)
.

Therefore, if we consider data-fitting over all shallow univariate ReLU networks (with
a skip connection) with N ≥ N0 neurons and regularize the quantity

‖D2 fnn‖M =
N∑
n=1

|vn||wn|, (1.19)

then, any solution will be a locally adaptive spline. Finally, we will later show in The-
orem 3.15 that the solutions to the regularized neural network training problem with
the regularizer in the above display are equivalent to the solutions when regularizing
the quantity

1

2

N∑
n=1

|vn|2 + |wn|2, (1.20)

which corresponds to training a shallow ReLU network (with a skip connection) with
weight decay. The equivalence of regularizers in (1.19) and (1.20) goes back to the
work of Grandvalet (1998) and was then rediscovered by Neyshabur et al. (2015b).
What is remarkable about this result is that the regularizer in (1.20) appears to be a
Tikhonov-type regularizer, but is in fact it is a sparsity-promoting regularizer. Thus,
we see, for a variety of reasons, that (deep) neural networks are splines.

1.6 Roadmap and Contributions

This dissertation is organized as follows.

Chapter 2: In this chapter we introduce the relevant background and notation from
functional analysis used extensively in this dissertation. The expert reader can
simply glance at this chapter to familiarize themselves with the notation used
in this dissertation.
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Chapter 3: In this chapter we propose and study a new family of Banach spaces
which are multivariate generalizations of the BVk(R) spaces defined in (1.8),
inspired by the Radon-domain seminorm proposed by Kurková et al. (1997);
Ongie et al. (2020a), with the property that the extreme points of the solution
set to data-fitting variational problems over these spaces correspond to shallow
neural networks (with skip connections) with less neurons than data. Since
in the univariate case, these extreme points correspond to kth-order splines,
we call such functions kth-order ridge splines to emphasize that they are
superpositions of ridge functions. We also refer to these spaces as the native
spaces for (sparse) ridge splines. These spaces are, in essence, kth-order BV

spaces defined in the Radon domain, so we call these spaces R BVk(Rd). We
then show that the solutions to optimization problem that corresponds to
training a shallow ReLU network with weight decay are solutions to data-fitting
variational problem over R BV2(Rd), providing a multivariate generalization of
the result of Savarese et al. (2019) discussed in Section 1.5.3. We then extend
this characterization to vector-valued, compositional function spaces and deep
neural networks, providing several new, principled forms of regularization for
deep neural networks.

Chapter 4: In this chapter we consider the restriction of R BVk(Rd) spaces to a
bounded domain Ω ⊂ Rd. We then derive (nonlinear) approximation rates
in L2(Ω) for functions in R BVk(Ω) and show that these rates cannot be
improved. These results readily follow from showing that the spaces R BVk(Ω)

are equivalent (in the sense of Banach spaces) to the variation spaces for shallow
neural networks with activation functions given by ρk defined in (1.17), and
invoking the approximation rates derived by Siegel and Xu (2021b). In the
special case of R BV2(Ω), we are also able to derive approximation rates in
L∞(Ω) and use this result to show that the solutions to the problem of training
a shallow ReLU network with weight decay are (up to logarithmic factors)
minimax optimal estimators for estimating functions in R BV2(Ω) from noisy
point evaluation measurements, providing a multivariate generalization of the
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minimax results of Mammen and van de Geer (1997) for functions in BV2[0, 1].
The approximation and estimation error rates do not grow with the input
dimension, providing insight into the phenomenon that neural networks seem to
break the curse of dimensionality. We also derive a linear minimax lower bound
for estimation of functions in R BV2(Ω), showing that linear methods (which
include kernel methods) are suboptimal at estimating functions in R BV2(Ω)

and necessarily suffer the curse of dimensionality.

Chapter 5: In this chapter we discuss several directions for future work including un-
derstanding the R BVk-spaces via wavelet-like atomic decompositions, defining
new Banach spaces via generalized Radon transforms, and alternative definitions
for for vector-valued R BVk-spaces different from the simple Cartesian product
of scalar-valued R BVk-spaces.
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Chapter 2

Elements of Functional Analysis

In this chapter, we review the relevant background from functional analysis used
throughout this dissertation. We will mostly be interested in function spaces of
functions mapping Rd → R (or C) and functions mapping Sd−1 × R → R (or C),
where

Sd−1 :=
{
x ∈ Rd : ‖x‖2 = 1

}
denotes the Euclidean sphere in Rd. We use the term function space to mean a
topological vector space whose elements are functions.

2.1 Spaces of Functions, Measures, and

Distributions

Lp spaces. For 1 ≤ p ≤ ∞, let Lp(Rd) denote the Lebesgue space on Rd, which is
a Banach space when equipped with the norm

‖f‖Lp :=


(∫

Rd
|f(x)|p dx

)1/p

, 1 ≤ p <∞,

ess sup
x∈Rd

|f(x)|, p =∞.
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The space Lp(Sd−1 × R) is defined analogously, except that the underlying measure
is the product measure of the surface measure on Sd−1 and the univariate Lebesgue
measure on R. The space Lp is a Banach space for 1 ≤ p ≤ ∞ and a Hilbert space if
and only if p = 2.

The spaces S and S′. Let S(Rd) denote the Schwartz space of smooth and rapidly
decaying test functions on Rd. These are functions ϕ ∈ C∞(Rd) such that

pα,β(ϕ) := sup
x∈Rd

∣∣xα(∂βϕ)(x)
∣∣ <∞, α,β ∈ Nd

0,

where xα = xα1
1 · · ·x

αd
d and ∂β = ∂β1

x1
· · · ∂βdxd is the usual multi-index notation, and

C∞(Rd) denotes the space of infinitely differentiable functions on Rd. We endow S(Rd)

with the topology induced by by the family of seminorms {pα,β}α,β∈Nd0 , making it a
Fréchet space (Rudin, 1991, Chapter 7). Let S(Sd−1 × R) denote the Schwartz space
of smooth and rapidly decaying test functions on Sd−1 × R, defined as S(Sd−1 × R) :=

C∞(Sd−1) ⊗̂ S(R), where ⊗̂ denotes the topological tensor product (Trèves, 1967,
Chapter 43).

The continuous dual of S(Rd) (resp. S(Sd−1 × R)) is the space of tempered
distributions on Rd (resp. Sd−1 × R), denoted S′(Rd) (resp. S′(Sd−1 × R)). This is
the space of continuous linear functionals on S(Rd) (resp. S(Sd−1 × R)) (Rudin, 1991,
Chapter 7). In particular, a tempered distribution u ∈ S′(Rd) defines a continuous
linear functional on the space of Schwartz functions S(Rd) via u : ϕ 7→ 〈u, ϕ〉, where
〈·, ·〉 denotes the duality pairing between S(Rd) and S′(Rd). The duality pairing
between ψ ∈ S(Sd−1 × R) and v ∈ S′(Sd−1 × R) will be denoted by [v, ψ]. We abuse
notation and also let 〈·, ·〉 (resp. [·, ·]) denote the pairing between any dual pair of
spaces on Rd (resp. Sd−1 × R), where the exact pairing will be clear from context.
We also use 〈·, ·〉 and [·, ·] to denote the corresponding L2-inner products.

The spaces C0 and M. Let C0(Rd) denote the space of continuous functions on
Rd vanishing at infinity. This space is a Banach space when equipped with the
L∞-norm. By the Riesz–Markov–Kakutani representation theorem, the continuous
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dual of C0(Rd) is the space M(Rd) of finite Radon measures on Rd, which is a Banach
space when equipped with the norm

‖u‖M := sup
ϕ∈C0(Rd)
‖ϕ‖L∞=1

〈u, ϕ〉,

where 〈·, ·〉 denotes the pairing between C0(Rd) and M(Rd). It is well-known that
C0(Rd) = (S(Rd), ‖·‖L∞) (the closure of S(Rd) with respect to ‖·‖L∞). Therefore, we
can alternatively define M(Rd) =

(
C0(Rd)

)′ as
M(Rd) =

u ∈ S′(Rd) : ‖u‖M = sup
ϕ∈S(Rd)
‖ϕ‖L∞=1

〈u, ϕ〉 <∞

.
TheM-norm is exactly the total variation norm in the sense of measures (Folland, 1999,
Chapter 7). The definition in the above display allows us to view M(Rd) as a subspace
of S′(Rd). The Banach space (M(Rd), ‖·‖M) can be viewed as a “generalization” of the
Banach space (L1(Rd), ‖·‖L1). Indeed, this is due to the following three properties:

1. L1(Rd) ⊂M(Rd), where the containment is strict;

2. The shifted Dirac impulse δ(· − x0), x0 ∈ Rd, is not contained in L1(Rd), but
δ(· − x0) ∈M(Rd) with ‖δ(· − x0)‖M = 1;

3. For every f ∈ L1(Rd), we have that ‖f‖L1 = ‖f‖M.

Working in this formalism allows us to work rigorously with (tempered) distributions
such as the Dirac impulse, which is often overlooked in engineering textbooks (see,
e.g., Feichtinger (2017); Unser (2020) for more details). The spaces C0(Sd−1 × R) and
M(Sd−1 × R) are defined analogously, where the same properties hold.
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2.2 Linear Operators

We will primarily be interested in linear operators mapping between functions mapping
Rd → R (or C) and functions mapping Rd → R (or C) and linear operators mapping
from functions mapping functions mapping Sd−1 × R → R (or C) and functions
mapping Rd → R (or C). In particular, we will want to apply these operators to
functions that are tempered distributions.

Definition 2.1. Let L : S(Rd)→ S′(Rd) be a continuous linear operator. The adjoint
of L is the unique continuous linear operator L∗ : S(Rd)→ S′(Rd) such that

〈L{ϕ}, φ〉 = 〈L∗{φ}, ϕ〉,

for all ϕ, φ ∈ S(Rd), where the duality pairing 〈·, ·〉 is the pairing between S(Rd) and
S′(Rd).

Definition 2.2. Let T : S(Rd)→ S′(Sd−1 × R) be a continuous linear operator. The
adjoint of T is the unique continuous linear operator T∗ : S(Sd−1 × R)→ S′(Rd) such
that

[T{ϕ}, ψ] = 〈T∗{ψ}, ϕ〉,

for all ϕ ∈ S(Rd) and ψ ∈ S(Sd−1 × R), where the duality pairing 〈·, ·〉 (resp. [·, ·])
is the pairing between S(Rd) and S′(Rd) (resp. S(Sd−1 × R) and S′(Sd−1 × R)).

Remark 2.3. The definition of the adjoint of an operator mapping S(Sd−1 × R) →
S′(Rd) is analogous to Definition 2.2.

One can quickly verify that for both Definitions 2.1 and 2.2, the double adjoint
of an operator is itself. Indeed, we illustrate this explicitly for a continuous linear
operator L : S(Rd) → S′(Rd). By Definition 2.1 we have for all ϕ, φ ∈ S(Rd) the
following two equalities: (i) 〈L∗{φ}, ϕ〉 = 〈L{ϕ}, φ〉; (ii) 〈L∗{φ}, ϕ〉 = 〈L∗∗{ϕ}, φ〉.
Subtracting these two equalities yields 〈L{ϕ}, φ〉 − 〈L∗∗{ϕ}, φ〉 = 0, i.e., for all
ϕ, φ ∈ S(Rd), 〈L{ϕ} − L∗∗{ϕ}, φ〉 = 0. Therefore, L∗∗{ϕ} = L{ϕ} for all ϕ ∈ S(Rd).
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The Schwartz kernel theorem. Linear operators can be completely characterized
by their (Schwartz) kernel. This is summarized by the Schwartz kernel theorem.

Theorem 2.4 (Schwartz kernel theorem). Let L : S(Rd)→ S′(Rd) be a continuous
linear operator. Then, there exists a unique tempered distribution h ∈ S′(Rd × Rd)

such that
〈L{ϕ}, φ〉 = (h, ϕ⊗ φ), (2.1)

for all ϕ, φ ∈ S(Rd), where (·, ·) denotes the pairing between S(Rd×Rd) and S′(Rd×Rd)

and (ϕ⊗ φ)(x,y) = ϕ(x)φ(y) is the tensor product between ϕ and φ.

Remark 2.5. When L{ϕ} and h are both locally integrable functions, (2.1) can be
rewritten as

L{ϕ}(x) =

∫
Rd
h(x,y)ϕ(y) dy.

When L{ϕ} and h are not both locally integral functions, we occasionally abuse
notation and write L{ϕ} as in the above display.

Remark 2.6. When the operator L is shift-invariant, its kernel h(x,y) satisfies
h(x,y) = h(x − y) for some h ∈ S′(Rd). Then L is a convolution operator with
L{ϕ} = h ∗ ϕ. In this case, h = L{δ} is known as the impulse response of L.

The Schwartz kernel theorem is intimately linked to the nuclearity of S(Rd) (Trèves,
1967, Chapters 50 and 51). While the form of the theorem in Theorem 2.4 can be
proved using elementary techniques (see, e.g., Simon, 1971, Theorem 5), the result
actually holds more generally on locally convex nuclear spaces via more advanced
techniques (Grothendieck, 1955). For example, consider the following variant of the
Schwartz kernel theorem.

Theorem 2.7. Let T : S(Rd)→ S′(Sd−1 × R) be a continuous linear operator. Then,
there exists a unique tempered distribution h ∈ S′(Rd × Sd−1 × R) such that

[T{ϕ}, ψ] = (h, ϕ⊗ ψ),
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for all ϕ ∈ S(Rd) and ψ ∈ S(Sd−1 × R), where (·, ·) denotes the pairing between
S(Rd× Sd−1 × R) and S′(Rd× Sd−1 × R) and (ϕ⊗ψ)(x, z) = ϕ(x)ψ(z) is the tensor
product between ϕ and φ, where x ∈ Rd and z ∈ Sd−1 × R.

Remark 2.8. Another variant of the Schwartz kernel theorem holds for continuous
linear operators mapping S(Sd−1 × R)→ S′(Rd).

Extension of operators by duality. Continuous linear operators that map
S(Rd) → S(Rd) can be extended to map S′(Rd) → S′(Rd). Indeed, suppose that
L : S(Rd) → S(Rd) and L∗ : S(Rd) → S(Rd) are both continuous linear operators.
Then, for u ∈ S′(Rd), we define L{u} as the tempered distribution such that

〈L{u}, ϕ〉 = 〈u,L∗{ϕ}〉

for all ϕ ∈ S(Rd). This technique can be applied more generally, e.g., for continuous
linear operators mapping S(Rd) → S(Sd−1 × R) and continuous linear operators
mapping S(Sd−1 × R)→ S(Rd).

2.3 Two Topologies of a Dual Banach Space

Given a Banach space (X, ‖·‖X), we will be interested in two topologies for its
continuous dual X′, which is a Banach space when equipped with the (dual) norm

‖u‖X′ := sup
v∈X
‖v‖X=1

〈u, v〉,

where 〈·, ·〉 is the duality pairing between X and X′.

Definition 2.9. A sequence {un}∞n=1 ⊂ X′ is said to converge to f in the strong
topology if

lim
n→∞
‖un − u‖X′ = 0.

In other words, the strong topology of X′ is the topology induced by the norm ‖·‖X′
and is the usual topology implicitly assumed when working with the Banach space X′.



35

Definition 2.10. A sequence {un}∞n=1 ⊂ X′ is said to converge to u in the weak∗

topology if
lim
n→∞
〈un − u, v〉 = 0,

for all v ∈ X.

Remark 2.11. The weak∗ topology is coarser than the strong topology of X′.

We will be interested in the continuity of linear functionals on dual Banach spaces
with respect to the two topologies in Definitions 2.9 and 2.10. In particular, the
space of all linear functionals on X′ which are continuous with respect to the strong
topology is (by definition) its continuous dual X′′. We refer to these linear functionals
as being continuous on X′.

Proposition 2.12 (Reed and Simon (1972, Theorem IV.20, pg. 114)). The space of
weak∗ continuous linear functionals on X′ is the space X.

From Proposition 2.12 we see that weak∗ continuity is actually a stronger notion
of continuity than the standard notion. Indeed, this is due to the fact that a Banach
space X is isometrically isomorphic to a closed subspace of its bidual X′′ (Rudin,
1991). In particular, we can view X

c.
↪→ X′′ via the canonical embedding of a Banach

space into its bidual. When X is a reflexive Banach space, the inclusion is actually
an equality, i.e., X = X′′, and therefore the space of continuous linear functionals
on X′ is the same as the space of weak∗ continuous linear functionals on X′. On
the other hand, when X is a non-reflexive Banach space, the inclusion X ⊂ X′′ is
strict. In this dissertation, we will mostly be interested in non-reflexive spaces, e.g.,
X′ =

(
C0(Rd)

)′
= M(Rd).

The Banach–Alaoglu theorem. It is well-known that closed balls are not compact
in infinite-dimensional spaces with respect to the topology induced by the norm, i.e.,
the strong topology of a dual space. The utility of working with the weak∗ topology
is that closed balls are compact in the weak∗ topology by the Banach–Alaoglu
theorem (Rudin, 1991, Chapter 3).
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Theorem 2.13 (Banach–Alaoglu theorem). The closed unit ball

B := {f ∈ X′ : ‖f‖X′ ≤ 1}

is weak∗ compact.

Remark 2.14. This result allows us to use compactness arguments to prove that
solutions exist to certain variational problems.

2.4 Direct-Sum Decompositions and Projectors

There are two ways of working with direct-sums of topological vector spaces: (i) ex-
plicitly, via projectors; (ii) abstractly, via quotient spaces and equivalence classes.
These two methods are equivalent whenever one can identify abstract quotient space
as a concrete subspace of the original space. In other words, by selecting a concrete
representer from each coset (which is an equivalence class). In this dissertation, we
will work with direct-sums explicitly via projectors rather than abstractly.

Let X be a topological vector space. A continuous linear operator P : X→ X with
the property that P2 = P on X is called a projection operator or a projector (Dunford
and Schwartz, 1988, pg. 140). When X is a Fréchet space, then U := P(X) is a closed
subspace of X. In this case, P is the projector of X onto U, i.e., P = ProjU, and
we have the direct-sum decomposition X = U ⊕ V, where V is the null space of P.
Said differently, the projector of X onto V is the complementary projector of P, i.e.,
ProjV = Id−P, where Id is the identity operator. The space U = P(X) is also a
topological vector space with the topology induced by the topology of X. Let (X,X′)

be a dual pair of topological spaces, the (U,U′) is also a dual pair of topological
spaces where U′ = P∗(X′), where P∗ : X′ → X′ is the dual (adjoint) projector.
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2.5 The Fourier, Hilbert, and Radon Transforms

The Fourier transform. The Fourier transform of ϕ ∈ S(Rd) is given by

ϕ̂(ω) = F {ϕ}(ω) =

∫
Rd
ϕ(x)e− jωTx dx, ω ∈ Rd,

where j2 = −1. The Fourier transform F : S(Rd) → S(Rd) is a continuous linear
bijection whose inverse F−1 : S(Rd) → S(Rd) is also continuous (Rudin, 1991,
Chapter 7). The inverse Fourier transform of ϕ̂ ∈ S(Rd) is given by

F−1{ϕ̂}(x) =
1

(2π)d

∫
Rd
ϕ̂(ω)e jωTx dω, x ∈ Rd. (2.2)

We can extend F and F−1 to act on S′(Rd) by duality.
An important property of the Fourier transform is Plancherel’s theorem, which

states that F : L2(Rd)→ L2(Rd) is an isometry. More specifically, given ϕ ∈ S(Rd),
we have the equality

(2π)d‖ϕ‖2
L2 = ‖ϕ̂‖2

L2 ,

and the operator F : S(Rd)→ S(Rd) admits a unique extension F : L2(Rd)→ L2(Rd)

since L2(Rd) = (S(Rd), ‖·‖L2).

The Hilbert transform. The Hilbert transform of ϕ ∈ S(R) is given by

H {ϕ}(x) =
1

π
p.v.

∫
R

f(x− y)

y
dy :=

1

π
lim
ε→0

∫
|y|>ε

f(x− y)

y
dy, x ∈ R,

where p.v. denotes that the integral is understood in the Cauchy principle value sense,
as defined above. Although the Hilbert transform of a Schwartz function is not a
Schwartz function, one may quickly verify that H maps S(R) to L2(R). In particular,
for ϕ ∈ S(R), the Hilbert transform satisfies

Ĥ ϕ(ω) = − j sgn(ω)ϕ̂(ω), (2.3)
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where ω 7→ − j sgn(ω) is the frequency response (or Fourier symbol/multiplier) of
H , where the Fourier transform in the above display is understood as the Fourier
transform of an L2(R) function, i.e., defined via density by Plancheral’s theorem. From
(2.3), we see that the Hilbert transform is skew-adjoint on L2(R), i.e., H ∗ = −H ;
in particular, H is unitary. Although the Hilbert transform cannot be extended to
S′(Rd) by duality, it can be extended to a large class of distributions, which suffices
for our purposes (Pandey, 2011, Chapter 3).

The Radon transform. The Radon transform of ϕ ∈ S(Rd) is given by

R{ϕ}(α, t) =

∫
Rd
ϕ(x)δ(αTx− t) dx, (α, t) ∈ Sd−1 × R,

where δ is the univariate Dirac impulse. The Radon domain is the hypercylinder
Sd−1 × R, with a direction variable α ∈ Sd−1 and an offset variable t ∈ R. Note that
the Radon transform of ϕ evaluated at (α, t) is precisely the integral of ϕ over the
hyperplane given by

P(α,t) :=
{
x ∈ Rd : αTx = t

}
.

Since P(α,t) = P(−α,−t), we see that the Radon transform is always an even function.
The Radon transform maps S(Rd) to a subspace of S(Sd−1 × R). This subspace is
characterized by the following range theorem for the Radon transform.

Theorem 2.15 (Ludwig (1966, Theorem 2.1)). A function ψ is the Radon transform
of a function ϕ ∈ S(Rd) if and only if

1. ψ ∈ S(Sd−1 × R);

2. ψ is even, i.e., ψ(α, t) = ψ(−α,−t);

3. Ψk(α) :=

∫
R
ψ(α, t)tk dt is a homogeneous polynomial (in α) for all k ∈ N0.

In other words, the range of the Radon transform SR := R
(
S(Rd)

)
is the subspace

of S(Sd−1 × R) satisfying the properties in Theorem 2.15. The conditions in Item 3
are often referred to as the moment (or Cavalieri) conditions of the Radon transform.
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The Radon transform is invertible on S(Rd) via the so-called filtered backprojection
operator. The Radon transform itself is sometimes referred to as the projection operator
since given ϕ ∈ S(Rd), for a fixed direction α0 ∈ Sd−1, the function R{ϕ}(α0, ·)
is a univariate function which corresponds to the projection1 of ϕ in the direction
specified by α0. The adjoint of the Radon transform is the so-called backprojection
operator and is given by

R∗{ψ}(x) =

∫
Sd−1

ψ(α,αTx) dσ(α),

for sufficiently nice functions ψ : Sd−1 × R→ R, where σ denotes the surface measure
on Sd−1. Given a function ϕ ∈ S(Rd), a calculation shows that

R∗Rϕ̂(ω) =
ϕ̂(ω)

cd‖ω‖d−1
2

,

where cd := 1/(2(2π)d−1). In other words, the result of applying the projection
followed by the backprojection to ϕ results in a “blurring” (attenuation of high
frequencies) of ϕ. We can “deblur” the projected backprojection by applying a ramp
filter to amplify high frequencies. The exact (spatial domain) filter is given by
(R∗R)−1 whose frequency response is

ω 7→ cd‖ω‖d−1
2 . (2.4)

This is realized by the operator

(R∗R)−1 = cd(−∆)
d−1

2 , (2.5)

where ∆ = ∂2
x1

+ · · · + ∂2
xd

is the d-dimensional Laplacian operator. Therefore, for
ϕ ∈ S(Rd), we have the following inversion formula2 for the Radon transform:

cd(−∆)
d−1

2 R∗Rϕ = ϕ.

1Technically speaking, this is not truly projection.
2This inversion formula also holds for ϕ ∈ L1(Rd).
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The operator cd(−∆)
d−1

2 R∗ is known as the filtered backprojection operator.
Since the frequency response in (2.4) is a radial function, by the intertwining

properties of the Radon transform (Helgason, 2011, Lemma 2.1), the filtering can
also be carried out in the Radon domain via the filter

Kd−1 := cd(−∂2
t )

d−1
2 =

cd(−1)
d−1

2 ∂d−1
t , d is odd

cd(−1)
d−2

2 H t ∂
d−1
t , d is even,

where H t denotes the Hilbert transform with respect to the t variable. The frequency
response of this operator is

K̂d−1(ω) = cd|ω|d−1,

where the Fourier transform is the univariate Fourier transform with respect to t→ ω.
Due to the Hilbert transform in Kd−1 that arises when d is even, we see that when
d is even, Kd−1 is a global operator. When applied to sufficiently nice functions, we
have the equality

cd(−∆)
d−1

2 R∗ = R∗Kd−1 .

We summarize this in the following theorem regarding the continuity and invertibility
of the Radon transform on S(Rd).

Theorem 2.16 (see, e.g., Ludwig (1966); Helgason (2011)). The operator R contin-
uously maps S(Rd)→ S(Sd−1 × R). Moreover,

R∗Kd−1 R = cd(−∆)
d−1

2 R∗R = cdR
∗R(−∆)

d−1
2 = Id

on S(Rd).

Just like the Fourier transform, the Radon transform also admits a kind of
Plancheral’s theorem (Ludwig, 1966, Theorem 1.3). In particular, it states that
K

d−1
2 R : L2(Rd) → L2(Sd−1 × R) is an isometry, where K

d−1
2 is defined via the

frequency response
K̂

d−1
2 (ω) =

√
cd |ω|

d−1
2 .
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Indeed, given f ∈ S(Rd) we have

‖K
d−1

2 Rf‖2
L2 =

[
K

d−1
2 Rf,K

d−1
2 Rf

]
=
〈
f,R∗K

d−1
2 Rf

〉
= 〈f, f〉 = ‖f‖2

L2 .

The operator K
d−1

2 R admits a unique extension K
d−1

2 R : L2(Rd) → L2(Sd−1 × R)

since L2(Rd) = (S(Rd), ‖·‖L2). We refer to this operator as the half-filtered pro-
jection operator. Moreover, this operator is invertible on L2

even(Sd−1 × R), the
subspace of even functions in L2(Sd−1 × R), by its adjoint operator. Indeed, we
have that K

d−1
2 R : L2(Rd) → L2

even(Sd−1 × R) with inverse given by R∗K
d−1

2 :

L2
even(Sd−1 × R)→ L2(Rd).
Unlike the Fourier transform, extending the Radon transform to (tempered)

distributions is a delicate matter. Indeed, the naïve approach to define the operators
R, Kd−1 R, and R∗ would be via duality in a similar manner used to extend the
Fourier transform to S′(Rd). This is summarized in the following definition.

Definition 2.17 (Unser (2022b, Definition 4)). The distribution g ∈ S′(Sd−1 × R) is
the formal Radon transform (or formal projection) of the distribution f ∈ S′(Sd−1 × R)

if
[g, ψ] = 〈f,R∗{ψ}〉, (2.6)

for all ψ ∈ Kd−1 R
(
S(Rd)

)
. Likewise, g ∈ S′(Sd−1 × R) is a formal filtered projection

of f ∈ S′(Rd) if
[g, ψ] =

〈
f,R∗Kd−1{ψ}

〉
, (2.7)

for all ψ ∈ R
(
S(Rd)

)
. Finally, f ∈ S′(Rd) is the backprojection of g ∈ S′(Sd−1 × R)

if
〈f, ϕ〉 = [g,R{ϕ}], (2.8)

for all ϕ ∈ S(Rd).

The issue that arises with the formal definitions in Definition 2.17 is that the
definitions are not unique. In particular, for (2.6) and (2.7), there are infinitely many
distributions g ∈ S′(Sd−1 × R) that satisfy (2.6) or (2.7). On the other hand, the
definition in (2.8) does provide a unique definition and therefore we did not refer
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to f as the formal backprojection of g. We refer the reader to Unser (2022b) for
more details. The fundamental issue boils down to the fact that the null space of
the operator R∗ : S′(Sd−1 × R) → S′(Rd) contains many exotic functions (Ludwig,
1966, Theorem 4.2). To this end, we can understand the Radon transform and related
operators for a variety of distributions by working with the so-called Radon-compatible
Banach spaces of Unser (2022b).

Let (X, ‖·‖X) be a Banach space such that S(Sd−1 × R)
d.
↪→ X

d.
↪→ S′(Sd−1 × R),

where
d.
↪→ denotes a dense embedding. Then, define the dual pair of Radon-compatible

Banach spaces as (XR := (SR , ‖·‖X),X′R). This dual pair satisfies many important
properties, which we summarize in the following proposition.

Proposition 2.18 (Unser (2022b, Theorem 7)). If there exists a complementary
Banach space Xc

R such that X = XR ⊕ Xc
R, then

1. The dual space is decomposable as X′ = X′R ⊕ (Xc
R)′.

2. The complement space Xc
R is the null space of R∗Kd−1 : X→ R∗Kd−1(XR) =: Y.

3. The dual complement space (Xc
R)′ is the null space of R∗ : X′ → R∗(X′R) = Y′.

4. PR := RR∗Kd−1 : X→ XR and P∗R = Kd−1 RR∗ : X′ → X′R form a dual pair of
projectors with PR(X) = XR and P∗R(X′) = X′R.

This proposition allows us to have a unique definition of the Radon transform
of functions that live in the Banach space X′ as above. Of particular interest is the
distributional definition of the Radon transform ridge distributions.

Theorem 2.19 (Unser (2022b, Proposition 10 & Corollary 11)). Let (α0, t0) ∈
Sd−1 × R and let r ∈ S′(R). Define the ridge distribution

r(α0,t0)(x) := r(αT
0x− t0).
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Furthermore, suppose that δ(· − α0) r(· − t0) ∈ X′, where (X,X′) is a dual pair of
Banach spaces as above. Then,

Kd−1 R
{
r(α0,t0)

}
= P∗R{δ(· −α0) r(· − t0)}

R
{
r(α0,t0)

}
= P∗R{δ(· −α0) (qd−1 ∗ r)(· − t0)},

where qd−1(t) = cd F−1
ω

{
1/|ω|d−1

}
(t) is the univariate impulse response of the Radon

domain inverse filtering operator (Kd−1)−1. In particular, when XR = Xeven, the
subspace of even functions in X, then P∗R = Peven, the even projector, defined as

Peven{f} :=
f + f∨

2
,

where f∨(z) = f(−z) is the reflection of f and z = (α, t) ∈ Sd−1 × R.

Another important result about the Radon transform is regarding its connection
with the Fourier transform via the so-called Fourier slice theorem. In particular, for
any f ∈ S′(Rd), the Fourier slice theorem states that

R̂{f}(α, ω) = f̂(ωα),

where the Fourier transform on the left-hand side is the univariate Fourier transform
with respect to t→ ω and the Fourier transform on the right-hand side is the usual
multivariate Fourier transform of f . We refer the reader to Ramm and Katsevich (1996,
Chapter 10) for the version of the Fourier slice theorem that applies to f ∈ S′(Rd).
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Chapter 3

Representer Theorems for Sparse
Ridge Splines

Shallow neural networks are superpositions of ridge functions. A ridge function is
any function mapping Rd → R that can be written in the form

x 7→ r(αTx),

where r : R→ R is referred to as the ridge profile and α ∈ Rd \ {0} is referred to as
the ridge direction. A ridge function is, in essense, a univariate function since it is
constant along the hyperplanes αTx = c, where c ∈ R (Pinkus, 2015). We illustrate a
ridge function in Figure 3.1. Ridge functions are ubiquitous in mathematics, science,
and engineering. For example,

• plane waves are time-varying functions of the form

(x, t) 7→ rt(α
Tx), (x, t) ∈ Rd × R,

where α ∈ Sd−1, which arise as solutions to many partial differential equations
(PDEs), e.g., the wave equation (John, 1981). Plane waves are ridge functions
with a time-varying profile rt : R→ R, where t ∈ R, and unit-norm direction
α ∈ Sd−1.
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(a) ReLU(x) = x+. (b) A ReLU ridge
function.

Figure 3.1: The rectified linear unit (ReLU) and a ReLU ridge function.

• the complex exponential x 7→ e jωTx, where ω ∈ Rd, is the fundamental building
block for representing a function as a superposition of pure frequencies via
the Fourier inversion formula in (2.2). These building blocks are precisely
ridge functions with profiles given by e j(·) and direction given by the frequency
variable ω ∈ Rd.

• shallow neural networks are superpositions of ridge functions of the form

x 7→
N∑
n=1

vnρ(wT
nx− bn), x ∈ Rd,

where we are using the same notation as in (1.12). Each term in this superpo-
sition is a ridge function with profile given by the shifted activation function
ρ(· − bn) and direction given by the weight vector wn ∈ Rd.

Ridge functions are intimately tied to the Radon transform. This observation goes
back to classical work regarding representing solutions to PDEs as superpositions
of plane waves, in which the PDEs are analyzed in the Radon domain (John, 1981;
Evans, 2010). The term “ridge function” is rather modern and was coined by Logan
and Shepp (1975) in their seminal work of computerized tomography (CT), in which
images are reconstructed from their Radon transform via ridge functions. Moreover,
a precursor to sparse signal approximation was the theory of ridgelets, which are
a wavelet-like representation system where the atoms are ridge functions (Murata,



46

1996; Rubin, 1998; Candès, 1998, 1999). In fact, the continuous ridgelet transform is
a univariate wavelet transform in the offset variable of the Radon domain (Candès,
1998, 1999; Kostadinova et al., 2014; Sonoda and Murata, 2017).

Recently, the connection between shallow ReLU networks and the Radon transform
was recently exploited by Ongie et al. (2020a), although similar results exist in the
case of unit step activation functions in Kurková et al. (1997). In Ongie et al. (2020a),
the authors propose an operator that sparsifies ReLU neurons. In particular, implicit
in the calculation in Ongie et al. (2020a, Example 1) is that

∂2
t Kd−1 R

{
ρ2(αT

0 (·)− t0)
}

(α, t) =
δ(α−α0)δ(t− t0) + δ(α+α0)δ(t+ t0)

2
, (3.1)

where we recall that Kd−1 R is the filtered projection operator, ρ2 is any Green’s
function of D2 (e.g., the ReLU), (α0, t0) ∈ Sd−1 × R, and δ is the Dirac impulse
in the appropriate domain. The reason that (3.1) is an even impulse is due to the
symmetries of the Radon domain. The property in (3.1) is analogous to the property
that

D2{ρ2(· − t0)}(t) = δ(t− t0),

which gave rise to the definition of the linear spline as in Definition 1.3. Moreover,
the largest space of functions in which the seminorm f 7→ ‖D2 f‖M is finite, defines
BV2(R), the native space for locally adaptive linear splines. To this end, we propose
and study the family of function spaces defined by the seminorm f 7→ ‖∂kt Kd−1 Rf‖M,
where k ∈ N. These seminorms are, in particular, total variation seminorms in the
(filtered) Radon domain.

In this chapter, we prove several properties about these spaces, including that they
are non-reflexive Banach spaces. We derive a representer theorem for these Banach
spaces, showing that functions that are realizable by the sum of a shallow neural
network and a polynomial term are universal solutions to variational inverse problems
with total variation regularization in the Radon domain. These functions can be
viewed as multivariate generalizations of splines and so we refer to these functions as
ridge splines, emphasizing that they are superpositions of ridge functions. Finally, we
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discuss applications of this representer theorem to learning with both shallow and
deep neural networks.

3.1 Representer Theorems Beyond Hilbert Spaces

In this section, we review the relevant background and historical remarks about
representer theorems. As discussed in Chapter 1, Section 1.3, the notion of a
representer theorem is a fundamental result regarding kernel methods. In particular, let
H be any real-valued Hilbert space on Rd and consider the data set {(xm, ym)}Mm=1 ⊂
Rd × R. The RKHS representer theorem considers the variational problem

fRKHS = arg min
f∈H

M∑
m=1

`(ym, f(xm)) + λ‖f‖2
H, (3.2)

where `(·, ·) is a convex and lower semicontinuous (in its second argument) loss
function and λ > 0 is an adjustable hyperparameter. The representer theorem then
states that the solution fRKHS is unique and fRKHS ∈ span{k(·,xm)}Mm=1, where
k(·, ·) is the reproducing kernel of H. Kernel methods (even before the term “kernel
methods” was coined) have received much success dating all the way back to the
1960s, especially due to the tight connections between kernels, reproducing kernel
Hilbert spaces, and splines (de Boor and Lynch, 1966; Micchelli, 1984; Wahba, 1990).

Recently, the term “representer theorem” has started being used for general
problems of convex regularization (Boyer et al., 2019; Bredies and Carioni, 2020; Unser,
2021; Unser and Aziznejad, 2022) as a way to designate a parametric formulation
of solutions to a data-fitting variational problem, ideally being a linear combination
from some dictionary of atoms. This has allowed more general problems to be
considered than ones like (3.2), which are restricted to regularizers which are Hilbertian
(semi)norms. The main utility of these more general representer theorems arises in
understanding sparsity-promoting regularizers such as the `1-norm or its continuous-
domain analogue, the M-norm, of which the structural properties of the solutions
are still not completely understood, though a theory is emerging. The generality
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of these kinds of representer theorems have been especially useful in some of the
recent developments of reproducing kernel Banach spaces (Zhang et al., 2009; Xu
and Ye, 2019), an infinite-dimensional theory of compressed sensing (Adcock and
Hansen, 2016; Adcock et al., 2017), as well as other inverse problems set in the
continuous-domain (Bredies and Pikkarainen, 2013).

The earliest instance of a representer theorem is, perhaps, due to Zuhovickĭı
(1948), where the classical problem of Radon measure recovery is studied. In the
Dirac recovery literature, this problem is also referred to as the Beurling LASSO
problem (De Castro and Gamboa, 2012) and can be viewed as the proper continuous-
domain analogue of the finite-dimensional compressed sensing problem. This problem
is posed over the non-reflexive Banach space of finite Radon measures and studies
the variational problem

min
u∈M(Rd)

‖u‖M s.t. H{u} = z ∈ RM ,

where H : M(Rd)→ RM is (component-wise) weak∗ continuous on M(Rd). Zuhovickĭı
(1948) derives a representer theorem for this problem (long before the term “representer
theorem” was coined). In particular, the solution set to this variational problem
is nonempty, convex, and weak∗ compact and the extreme points are given by
superpositions of Dirac impulses of the form

x 7→
N∑
n=1

anδ(· − tn),

where {an}Nn=1 ⊂ R \ {0}, {tn}Nn=1 ⊂ Rd, and N ≤ M . The key idea behind this
representer theorem is that the extreme points of the unit ball of M(Rd) are the Dirac
impulses ±δ(· −x0), x0 ∈ Rd. To see why the extreme points of the solution set take
the form of a sparse superposition of the extreme points of the unit ball, consider the
following compressed sensing (`1-norm minimization) problem

min
x∈RN

‖x‖1 s.t. Hx = z, (3.3)
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where the operator H ∈ RM×N is now a matrix. We illustrate this intuition in
Figure 3.2. From Figure 3.2(a), we see that the extreme points of the unit `1-ball
are the Kronecker impulses ±δ[· − k], k = 1, . . . , N . In Figure 3.2(b) we illustrate a
scenario where the solution to (3.3) is unique in which case it is a constant scaling
of a single Kronecker impulse. In Figure 3.2(b) we illustrate a scenario where the
solution to (3.3) is nonunique in which case the extreme points of the solution set
take the form of a constant scaling of a single Kroncker impulse, and the full solution
set is the convex hull of these extreme points.

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

Figure 3.2: Illustration of the compressed sensing optimization problem when N = 2
and M = 1. The blue diamond denotes the `1-ball. The red lines denote the signals
x ∈ RN consistent with the measurements Hx = z. The solutions to the compressed
sensing problem in (3.3) are highlighted. In (a) we illustrate the `1-ball. In (b) we
illustrate the situation of a unique solution. In (c) we illustrate the situation of
nonunique solutions.

In the continuous-domain formulation of this problem, the same phenomenon
arises. To see why the extreme points of the unit ball in M(Rd) take the form of
±δ(· −x0), x0 ∈ Rd, we reproduce the following standard proof adapted from Bredies
and Carioni (2020, Proposition 4.1).

Proposition 3.1 (see Bredies and Carioni (2020, Proposition 4.1)). The extreme
points of the unit ball

BM(Rd) =
{
u ∈M(Rd) : ‖u‖M ≤ 1

}
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take the form ±δ(· − x0), x0 ∈ Rd, where δ is the Dirac impulse.

Proof. In this proof we view elements of M(Rd) as measures (instead of tempered
distributions). We first show that σδx, σ ∈ {−1,+1}, where δx denotes the Dirac
measure supported at x ∈ Rd, is an extreme point. Suppose

σδx = tu1 + (1− t)u2, (3.4)

for some u1, u2 ∈ BM(Rd) and some t ∈ (0, 1). We want to show that u1 = u2 = σδx.
Let |·| denote the total variation measure. Clearly |u1| and |u2| must be probability
measures. Indeed, if not, then 1 = ‖σδx‖M ≤ t‖u1‖M + (1− t)‖u2‖M < t+ (1− t) = 1,
a contradiction. Next,

δx = |σδx| ≤ t|u1|+ (1− t)|u2| =: u,

where the inequality is understood pointwise. Since |u1| and |u2| are probability
measures, u must be a probabilty measure. The inequality in the above display must
be an equality. Indeed, given a measurable set E, if x ∈ E then

1 = δx(E) ≤ u(E) ≤ 1.

On the other hand, if x 6∈ E then

1 = δx(Rd \ E) ≤ u(Rd \ E) ≤ 1

and so u(Rd\E) = 1. Therefore, u(E) = u(Rd)−u(Rd\E) = 1−1 = 0. Hence u = δx.
This implies |u1| = |u2| = δx which implies u1 = σδx and u2 = σδx. Therefore, σδx is
an extreme point of BM(Rd).

We now show that these are the only extreme points. We proceed by contradiction.
Let u be an extreme point that is not a Dirac measure. Then, ‖u‖M = 1. For
any measurable set A, let u E(A) := u(E ∩ A) denote the restriction of u to the
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measurable set E. For every measurable E it is always true that

u = u E + u (Rd \ E) = |u|(E)︸ ︷︷ ︸
=: t

[
u E

|u|(E)

]
︸ ︷︷ ︸

=:u1

+|u|(Rd \ E)

[
u (Rd \ E)

|u|(Rd \ E)

]
︸ ︷︷ ︸

=:u2

.

Since the above display holds for every measurable E combined with the fact that u
is not a Dirac impulse, we can always find an E such that u 6= u1 and u 6= u2. Thus,
the above display implies u = tu1 + (1− t)u2 with u 6= u1 and u 6= u2, a contradiction.
Therefore, u cannot be an extreme point.

It turns out that many variational problems that hinge on sparsity-promoting
regularization with the M-norm can be reduced to the problem of Radon measure
recovery (e.g., the locally adaptive spline problems). This boils down to establishing
an isomorphism between the native space of the variational problem and a space of
finite Radon measures.

In the last few years, the neural network community has also been interested in
sparsity-promoting regularization for neural networks. In particular, many authors
consider the problem of learning with continuum-width shallow neural networks by
considering functions that take the form of a neuronal activation function integrated
against a finite Radon measure (see, e.g., Rosset et al., 2007; Bach, 2017, and
references therein). While this synthesis formulation of learning is insightful, there is
a strong incentive to make the connection with regularization theory in direct analogy
with the classical theory of inverse problems and machine learning that follows the
analysis/variational formulation of the problem, which is the viewpoint adopted in
this chapter.
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3.2 R BVk(Rd), k ∈ N: the Sparse Ridge Spline

Native Spaces

Recall from Chapter 1 that the native space for the kth-order locally adaptive splines
is the kth-order BV space defined as

BVk(R) =
{
f ∈ S′(R) : TVk(f) <∞

}
,

for k ∈ N, where TVk(f) = ‖Dk f‖M is the kth-order total variation of f . A key
property about the TVk(·) seminorm is that its null space, which is the null space of
the operator Dk, defined by

N(Dk) :=
{
q ∈ BVk(R) : Dk q = 0

}
is finite-dimensional. It is, in particular, the space of polynomials of degree at most
k − 1. Since we will be studying the seminorms

f 7→ ‖∂kt Kd−1 Rf‖M, (3.5)

for k ∈ N, we must carefully define the native space so that the null space of the
operator

Dk
R := ∂kt Kd−1 R,

which can be viewed as a “Radonized” kth-order derivative operator, is finite-
dimensional. To this end, we impose a growth restriction when defining the native
space for the seminorm in (3.5). Thus, we define the family of native spaces

R BVk(Rd) :=

f ∈ S′(Rd) :
‖Dk

R f‖M <∞

ess sup
x∈Rd

|f(x)|(1 + ‖x‖2)−k+1

, (3.6)

for k ∈ N. The second constraint in (3.6) imposes that functions in R BVk(Rd) do
not grow faster than the algebraic growth rate of k − 1. This growth restriction
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ensures that the null space of the operator Dk
R , defined by

N(Dk
R) :=

{
q ∈ R BVk(Rd) : Dk

R q = 0
}

is finite-dimensional, while also being non-empty. We later show in Lemma 3.4 that
N(Dk

R) is, in particular, the space of polynomials of degree at most k − 1. Imposing
such a growth restriction on the native space is a common technique in multivariate
scattered data approximation, in particular, in the L2-theory of radial basis functions
and polyharmonic splines (Wendland, 2004, Chapter 10). This is because constructing
operators acting on multivariate functions with finite-dimensional null spaces is nearly
impossible1. Since the seminorm f 7→ ‖Dk

R f‖M is exactly the kth-order total variation
of f in the (filtered) Radon domain, we write R TVk(f) := ‖Dk

R f‖M.
We can view R BVk(Rd) as a subspace of L∞(Rd;n), which is the weighted

L∞-space defined by

L∞(Rd;n) :=

{
f ∈ S′(Rd) : ‖f‖L∞,n := ess sup

x∈Rd
|f(x)|(1 + ‖x‖2)−n <∞

}
, (3.7)

when n = k− 1. This space is a Banach space whose predual is given by the weighted
L1-space defined by

L1(Rd;−n) :=

{
f ∈ S′(Rd) : ‖f‖L1,−n :=

∫
Rd
|f(x)|(1 + ‖x‖2)n dx <∞

}
. (3.8)

We refer the reader to Unser et al. (2017, Section 4) for more details about the dual
pair (L1(Rd;−n), L∞(Rd;n)).

3.2.1 The Representer Theorem

Theorem 3.2. Consider the following setting:
1For example, consider ∆, the Laplacian operator in Rd. Its null space is the space of harmonic

functions which is infinite-dimensional for d ≥ 2. On the other hand, the univariate Laplacian
operator, d2/dx2, has a finite-dimensional null space which is simply span{1, x}.
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1. The loss function `(·, ·) : R× R→ R≥0 is convex, coercive, and lower semicontin-
uous in its second argument.

2. The linear measurement functionals hm : R BVk(Rd) → R : f 7→ 〈hm, f〉, where
m = 1, . . . ,M , are linearly independent and weak∗ continuous.

3. The number of measurements M is strictly greater than the dimension of the null
space N(Dk

R).

4. The regularization hyperparameter λ > 0 is fixed.

Then, for any fixed y ∈ RM , the solution set to the data-fitting variational problem

V := arg min
f∈R BVk(Rd)

M∑
m=1

`(ym, 〈hm, f〉) + λR TVk(f)

is nonempty, convex, and weak∗ compact. If `(·, ·) is strictly convex (or if it imposes
the equality ym = 〈hm, f〉, for m = 1, . . . ,M), then the solution set V is the weak∗

closure of the convex hull of its extreme points, which can all be expressed as

fridge(x) =

N0∑
n=1

vnρk(w
T
nx− bn) + c(x),

where {vn}N0

n=1 ⊂ R \ {0}, {wn}N0

n=1 ⊂ Sd−1, {bn}N0

n=1 ⊂ R, c(·) is a polynomial of
degree at most k − 1, and N0 < M . The corresponding regularization cost, which is
common to all solutions, is R TVk(fridge) =

∑N0

n=1|vn| = ‖v‖1.

The key takeaway of Theorem 3.2 is that the solution set to data-fitting variational
problems over R BVk(Rd) is completely characterized by functions that are realizable
by a shallow neural network plus a polynomial term (i.e., a ridge spline) with less
neurons than measurements. The fact that the number of neurons is strictly less than
the number of measurements illustrates the sparsifying effect of the M-norm.

In order to prove Theorem 3.2, we require several intermediary results. In
particular, we must understand the topological properties of the family of spaces
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R BVk(Rd). We first provide a definition for ridge splines analogous to the operator-
theoretic definition of a spline in Definition 1.3. Then, we show that, when equipped
with the proper direct-sum topology, R BVk(Rd) is a non-reflexive Banach space.
Establishing such a direct-sum decomposition is a common technique in spline theory,
going back to early work on smoothing splines (de Boor and Lynch, 1966; Kimeldorf
and Wahba, 1970a,b, 1971). Finally, we use these results to prove the representer
theorem.

3.2.2 An Operator-Theoretic Definition of a Ridge Spline

The key idea in the definition of a spline in Definition 1.3 was the Green’s function
property of the spline atoms. A similar property holds for ridge functions whose
profiles given by ρk defined in (1.17).

Lemma 3.3. Let z0 = (α0, t0) ∈ Sd−1 × R. Then, it holds that

Dk
R

{
ρk(α

T
0 (·)− t0)

}
(z) =

δ(z − z0) + (−1)kδ(z + z0)

2
,

where k ∈ N and δ is the Dirac impulse on Sd−1 × R.

Proof. First note that the δ(· −α0) ρk(· − t0) ∈ X′, where

X = C(Sd−1) ⊗̂L1(R;−k + 1),

where C(Sd−1) is the space of continuous functions on Sd−1 and L1(R;−k + 1) is the
weighted L1-space defined in (3.8). This is because

X′ = M(Sd−1) ⊗̂L∞(R; k − 1),

where M(Sd−1) =
(
C(Sd−1)

)′ is the space of finite Radon measures on Sd−1 and
L∞(R; k − 1) is the weighted L∞-space defined in (3.7). Consider the pair of Radon-
compatible subspaces (XR ,X

′
R) as in Section 2.5 with this choice of (X,X′). One can
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then verify that in this case we have that XR = Xeven
2 and so the dual projector

P∗R : X′ → X′R from Proposition 2.18 is the even projector, Peven. Next, since
Dk

R = ∂kt Kd−1 R, we have by Theorem 2.19 that

Dk
R

{
ρk(α

T
0 (·)− t0)

}
(α, t) = ∂kt P∗R{δ(· −α0) ρk(· − t0)}(α, t)

= ∂kt Peven{δ(· −α0) ρk(· − t0)}(α, t)

= ∂kt

{
δ(α−α0)ρk(t− t0) + δ(−α−α0)ρk(−t− t0)

2

}
=
δ(α−α0)δ(t− t0) + (−1)kδ(−α−α0)δ(−t− t0)

2

=
δ(α−α0)δ(t− t0) + (−1)kδ(α+α0)δ(t+ t0)

2

=
δ(z − z0) + (−1)kδ(z + z0)

2
.

Note that this result holds when ρk is replaced with any Green’s function of Dk.

The other important property of the definition of a spline in Definition 1.3 is that
the null space of the sparsifying operator L was finite-dimensional. This is also true
for the null space of Dk

R .

Lemma 3.4. The null space N(Dk
R) is exactly the space of polynomials of degree at

most k− 1 on Rd, denoted Pk−1(Rd), which is a finite-dimensional space of dimension(
d+k−1
k−1

)
.

Proof. Let f ∈ R BVk(Rd). By the Fourier slice theorem,

D̂k
R{f}(α, ω) = cd( jω)k|ω|d−1R̂{f}(α, ω) = cd( jω)k|ω|d−1f̂(ωα). (3.9)

In order for f ∈ N(Dk
R), we require that (3.9) is 0 for all (α, ω) ∈ Sd−1 × R. From the

right-hand side of (3.9), we see that when ω = 0, (3.9) is 0. Therefore, f ∈ N(Dk
R)

2This follows from the fact that the so-called Lizorkin space S∞(R) ⊂ S(R) of Schwartz functions
with all moments vanishing is dense in Lp(R) for 1 ≤ p <∞ (Samko, 1995). In particular, it can
be seen that the even functions in the Lizorkin space on Sd−1 × R (appropriately defined) form a
subspace of SR from the moment conditions in Theorem 2.15. See Unser (2022a, Lemma 2) for
more details.
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if and only if f̂ is supported only at 0. Therefore, f must be a polynomial, and, in
particular, from the growth restriction in the definition of R BVk(Rd), a polynomial
of degree at most k − 1. Therefore, N(Dk

R) ⊂ Pk−1(Rd).
Next, we have by the intertwining properties of the Radon transform and the

Laplacian that
Dk

R = ∂kt Kd−1 R = Lt Kd−1 R∆k/2, (3.10)

where Lt is a Fourier multiplier in the t variable defined via the univariate frequency
response from t→ ω

L̂t(ω) = sgn(ω)k.

When k is an even integer, Lt = Id and when k is an odd integer, Lt is proportional
to the Hilbert transform H t. From (3.10), we see that N(Dk

R) is at least as large
as N(∆k/2), the growth restricted null space of ∆k/2. Finally, it is well-known
that the growth restricted null space of ∆k/2 is the space of polynomials of degree
at most k − 1. The argument for this claim is that the only harmonic functions
of slow growth are polynomials. Therefore, N(Dk

R) ⊃ Pk−1(Rd). Thus, we have
shown that N(Dk

R) = Pk−1(Rd). The dimension of Pk−1(Rd) follows from a counting
argument.

With Lemmas 3.3 and 3.4, we have the following definition of a ridge spline.

Definition 3.5. A function f : Rd → R of slow growth3 is said to be a ridge spline
of order k ∈ N if

Dk
R f = ∂kt Kd−1 Rf =

N∑
n=1

anδk(· − zn),

where

δk(z) :=
δ(z) + (−1)kδ(−z)

2
, (3.11)

{an}Nn=1 ⊂ R is a sequence of weights, and {zn}Nn=1 ⊂ Sd−1 × R are the directions
and offsets of the neurons of the ridge spline. The function Dk

R f is referred to as the
innovation of f .

3i.e., in the space L∞(Rd; k − 1).
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3.2.3 Direct-Sum Decomposition of R BVk(Rd)

In this section we equip R BVk(Rd) with an appropriate direct-sum topology, showing
that these spaces are non-reflexive Banach spaces. We use the techniques developed
in Unser et al. (2017) which established a direct-sum decomposition for the native
spaces for sparse L-splines. Since the null space N(Dk

R) is finite-dimensional, we are
guaranteed the existence of a biorthogonal system for N(Dk

R).

Definition 3.6. Let N be a finite-dimensional space of dimension D0 := dimN. The
pair (φ,p) = {(φ`, p`)}D0−1

`=0 is called a biorthogonal system for N if p = {p`}D0−1
`=0 is a

basis of N and the “boundary” functionals φ = {φ`}D0−1
`=0 with φ` ∈ N′ (the continuous

dual of N) satisfy the biorthogonality condition 〈φ`, pn〉 = δ[`−n], `, n = 0, . . . , D0−1,
where δ[·] is the Kronecker impulse and 〈·, ·〉 is the duality pairing between N and N′.

Put D0 := dimN(Dk
R) =

(
d+k−1
k−1

)
and let η = (φ,p) be a biorthogonal system for

N(Dk
R). Definition 3.6 implies that every q ∈ N(Dk

R) admits the unique representation

q =

D0−1∑
`=0

〈φ`, q〉p`.

We can define the projector PN(DkR),η : R BVk(Rd)→ N(Dk
R) as

PN(DkR),η{f} =

D0−1∑
`=0

〈φ`, f〉p`.

Moreover, since N(Dk
R) is finite-dimensional, it is a Banach space when equipped

with the norm

‖q‖N(DkR),η :=

D0−1∑
`=0

|〈φ`, q〉|.

One could impose any finite-dimensional norm on the coefficients {〈φ`, q〉}D0−1
`=0 to

define an equivalent norm (since all norms are equivalent in finite dimensions).
Next, as a precursor to establishing the direct-sum decomposition of R BVk(Rd),

we construct a stable (i.e., bounded) right-inverse of the operator Dk
R . This inverse
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will be later used to establish an isomorphism between R BVk(Rd) and a space of
finite Radon measures, which will be used to establish the direct-sum decomposition
of R BVk(Rd) in Theorem 3.8 and prove Theorem 3.2, the representer theorem. The
space of finite Radon measures we are interested is the subspace Mk(Sd−1 × R) ⊂
M(Sd−1 × R) defined by

Mk(Sd−1 × R) :=

{
u+ (−1)ku∨

2
: u ∈M(Sd−1 × R)

}
,

where u∨ is the reflection of u. If we define the projector

Pk{u} :=
u+ (−1)ku∨

2
, (3.12)

we have that Mk(Sd−1 × R) = Pk

(
M(Sd−1 × R)

)
.

Lemma 3.7. Let η = (φ,p) be a biorthogonal system for N(Dk
R) ⊂ R BVk(Rd) ⊂

L∞(Rd; k − 1). Then, there exists a unique operator D−kR,η : Mk(Sd−1 × R) →
L∞(Rd; k − 1) with the property that

Dk
R D−kR,η u = u (right-inverse property)

PN(DkR),η

{
D−kR,η u

}
= 0 (boundary conditions)

for all u ∈Mk(Sd−1 × R). The kernel of this operator is

gk,η(x, z = (α, t)) = ρk(α
Tx− t)− PN(DkR),η

{
ρk(α

T(·)− t)
}

(x),

where x ∈ Rd and z ∈ Sd−1 × R. Moreover, this kernel satisfies the stability/continuity
bound

Cη := sup
x∈Rd

z∈Sd−1×R

|gk,η(x, z)|(1 + ‖x‖2)−k+1 <∞.

Proof. For the proof of the continuity bound, we refer the reader to Unser et al. (2017,
Theorem 3), which establishes such a bound for generic linear operators mapping
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from finite Radon measures to L∞(Rd;n), n ∈ N. This ensures that we can specify
linear operators by their kernels by the Schwartz kernel theorem.

Next, we see that the stability condition implies that ‖gk,η(x, ·)‖L∞ < ∞ and
so D−kR,η u is well-defined. Therefore, the right-inverse property fo D−kR,η holds by a
direct calculation and noting that Dk

R : R BVk(Rd)→Mk(Sd−1 × R). The boundary
conditions hold since the kernel of D−kR,η subtracts off the null space component (this
can also be verified by a direct calculation). Finally, uniqueness of this operator holds
due to the uniqueness of the representations of elements of N(Dk

R).

Theorem 3.8. Let η = (φ,p) be a biorthogonal system for R BVk(Rd). Then, the
following equivalent conditions hold:

1. Every f ∈ R BVk(Rd) admits a unique direct-sum decomposition as

f = D−kR,η u+ qη, (3.13)

where u = Dk
R f ∈Mk(Sd−1 × R) and qη = PN(DkR),η f ∈ N(Dk

R).

2. The space R BVk(Rd) when equipped with the norm

‖f‖R BVk(Rd),η := R TVk(f) + ‖PN(DkR),η f‖N(DkR),η

is a Banach space.

Proof. Define the following subspace of R BVk(Rd):

R BVk
η(Rd) =

{
f ∈ R BVk(Rd) : PN(DkR),η f = 0

}
. (3.14)

We have the equality R BVk
η(Rd) = (Id−PN(DkR),η)

(
R BVk(Rd)

)
. In particular,

R BVk
η(Rd) is a concrete transcription of the abstract quotient R BVk(Rd)/N(Dk

R)

(i.e., we are working with a concrete representer from the equivalence class/coset mem-
bers of the abstract quotient). Thus, we see that Dk

R : R BVk
η(Rd)→Mk(Sd−1 × R)

is a bijective isometry. By the bounded inverse theorem, there exists a bounded
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inverse D−kR : Mk(Sd−1 × R)→ R BVk
η(Rd). This inverse is exactly D−kR = D−kR,η, the

unique operator constructed in Lemma 3.7 satisfying the conditions in (3.14).

1. Direct-sum decomposition. The discussion above immediately implies the direct-
sum decomposition in (3.13).

2. The Banach norm. The discussion above specifies the structural property that
R BVk(Rd) = R BVk

η(Rd)⊕N(Dk
R). Since R BVk

η(Rd) is isometrically isomorphic
to Mk(Sd−1 × R) via Dk

R , we can equip R BVk
η(Rd) with the norm f 7→ ‖Dk

R f‖M =

R TVk(f), making it a Banach space. We can also equip N(Dk
R) with the norm

q 7→ ‖q‖N(DkR),η. Therefore, from the direct-sum decomposition in (3.13), we can
make R BVk(Rd) a Banach space when we equip it with the composite norm

‖f‖R BVk(Rd),η := ‖u‖M + ‖qη‖N(DkR),η = R TVk(f) + ‖PN(DkR),η f‖N(DkR).

Remark 3.9. Theorem 3.8 says, in particular, that R BVk(Rd) is isometrically isomor-
phic to Mk(Sd−1 × R) × N(Dk

R). Since Mk(Sd−1 × R) is non-reflexive, this implies
that R BVk(Rd) is non-reflexive. Moreover, this says that R BVk(Rd) does not admit
an unconditional basis.

3.2.4 Proof of the Representer Theorem

Proof of Theorem 3.2. The proof of the representer theorem follows directly from
the abstract representer theorem for direct-sums in Unser and Aziznejad (2022,
Theorem 3). This abstract result gives the generic form of the extreme points of V as

fextreme(x) =

N0∑
n=1

vnen(x) + c(x),
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where {vn}N0

n=1 ⊂ R \ {0}, c ∈ N(Dk
R), N0 < M , and {en}N0

n=1 are the extreme points
of of the unit ball

B :=
{
f ∈ R BVk(Rd) : R TVk(f) ≤ 1

}
.

First note that from Lemma 3.4, we have that N(Dk
R) = Pk−1(Rd) and so c is a

polynomial of degree at most k−1. Next, note that the extreme points of the unit ball{
u ∈Mk(Sd−1 × R) : ‖u‖M ≤ 1

}
take the form ±δk(· −z0), z0 ∈ Sd−1 × R, where δk

is defined in (3.11). Indeed, this follows from the fact that the extreme points of the
unit ball

{
u ∈M(Sd−1 × R) : ‖u‖M ≤ 1

}
take the form ±δ(· − z0), z0 ∈ Sd−1 × R

(see, e.g., Bredies and Carioni, 2020, Proposition 4.1), combined with the fact that
Mk(Sd−1 × R) = Pk

(
M(Sd−1 × R)

)
, where Pk is the unit norm projector defined in

(3.12). In particular, since Pk is a unit norm projector, we have that the extreme points
of
{
u ∈Mk(Sd−1 × R) : ‖u‖M ≤ 1

}
take the form Pk{±δ(· − z0)} = ±δk(· − z0),

z0 ∈ Sd−1 × R (Neumayer and Unser, 2022, Proposition 5).
Next, let η = (φ,p) be a biorthogonal system for N(Dk

R). Since D−kR,η constructed
in Lemma 3.7 is an isometric isomorphism from Mk(Sd−1 × R) to R BVk

η(Rd) (defined
in (3.14)), we have that D−kR,η maps extreme points of the unit ball in Mk(Sd−1 × R)

to the extreme points of the unit ball in R BVk
η(Rd), i.e., we have that the extreme

points of the unit ball

{
f ∈ R BVk

η(Rd) : R TVk(f) ≤ 1
}

take the form D−kR,η{±δk(· − z0)}, z0 ∈ Sd−1 × R. From the definition of D−kR,η in
Lemma 3.7, we have that these extreme points take the form

x 7→ ±
(
ρk(α

T
0x− t0) + (−1)kρk(−αT

0x+ t0)

2

)
= ±ρk(αT

0x− t0)

where z0 = (α0, t0) ∈ Sd−1 × R and the equality holds due the symmetry/antisym-
metry of ρk defined in (1.17). Therefore, the extreme points of B take the form
x 7→ ±ρk(αT

0x− t0) + q(x), for some q ∈ N(Dk
R), which proves the theorem.
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3.2.5 Discussion

The R TVk-seminorm satisfies many useful properties. It is rotation-, scale-, and
translation-invariant, summarized in the following theorem.

Theorem 3.10. Given f ∈ R BVk(Rd), define g(x) = f(γUx− b), where γ > 0 is
a scaling factor, U ∈ Rd×d is an orthogonal matrix (i.e., UTU = I), and b ∈ Rd is a
translation. Then,

R TVk(f) = γk−1 R TVk(g).

The proof of this theorem is a direct calculation. We refer the reader to Ongie et al.
(2020a) for an explicit calculation in the case that k = 2. The R TVk-seminorm also
recovers the TVk-seminorm in the univariate case. Indeed, this follows by noticing
that in the univariate case, the Radon transform is simply the operator

R{f}(α, t) = f

(
t

α

)
,

where α ∈ {±1} and t ∈ R, and the ramp filter Kd−1 is simply multiplication by the
constant 1/2. Therefore, in the univariate case we have

R TVk(f) =
1

2
‖∂kt Rf‖M =

1

2

∑
α∈{±1}

∥∥∥Dk f
( ·
α

)∥∥∥
M

= ‖Dk f‖M = TVk(f),

where the second to last equality holds since f(·/α), α ∈ {±1}, is either f or its
reflection, both of which have the same ‖Dk{·}‖M value. Thus, in the univariate
case, we have R BVk(R) = BVk(R). Therefore, the representer theorem in Theo-
rem 3.2 can be viewed as a multivariate generalization of the representer theorem for
locally adaptive splines, and so sparse ridge splines can be viewed as a multivariate
generalization of locally adaptive splines.

Since when d = 1, R TV1(·) = TV1(·) = TV(·), which is the usual notation of
total variation in the univariate case, for d > 1 and when k = 1, R TV(·) := R TV1(·)
can be viewed as a new notion of multivariate total variation, different from the usual
notion TV(f) = ‖∇f‖M and deserves further study.
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3.2.6 Fractional Ordered Spaces

We can also define fractional (non-integer) ordered variants of the R BV-spaces.
Given a real number s ≥ 1, there are two possible definitions which make sense in
our setting, the symmetric space

R BVs
sym(Rd) :=

f ∈ S′(Rd) :
‖∂st∗Kd−1 Rf‖M <∞

ess sup
x∈Rd

|f(x)|(1 + ‖x‖2)−ds−1e

 (3.15)

and the antisymmetric space

R BVs
antisym(Rd) :=

f ∈ S′(Rd) :
‖∂st∗H t Kd−1 Rf‖M <∞

ess sup
x∈Rd

|f(x)|(1 + ‖x‖2)−ds−1e

, (3.16)

where ∂st∗ denotes the self-adjoint fractional derivative operator defined by the uni-
variate frequency response ω 7→ |ω|s. The reason for the growth restriction of order
ds− 1e in (3.15) and (3.16) is due to the fact that the null space of the fractional
derivative operator Ds defined by the frequency response ω 7→ ( jω)s is the space of
polynomials of degree at most ds− 1e (Unser and Blu, 2000).

We refer to the space defined in (3.15) as the symmetric version of the space
since the resulting activation functions in the representer theorem over R BVs

sym(Rd)

will be proportional to |·|s−1 (i.e., they are symmetric about the origin), while the
resulting activation functions in the representer theorem over R BVs

antisym(Rd) will
be proportional to sgn(·)|·|s−1 (i.e., they are antisymmetric about the origin). These
are exactly the building blocks of the symmetric and antisymmetric fractional splines
of Unser and Blu (2000).

3.3 Applications to Learning with Neural Networks

While Theorem 3.2 is a powerful representer theorem result for general inverse prob-
lems, the problem of learning is interested in the setting where the measurement
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operator corresponds to point evaluations. Additionally, the ReLU activation (trun-
cated linear function) is of particular interest to the neural network community. In
this section, we discuss applications of Theorem 3.2 to the problem of learning with
ReLU neural networks, i.e., the k = 2 case. To this end, the first step is to establish
that the point evaluation operator is weak∗ continuous on R BV2(Rd).

In order to equip R BV2(Rd) with an explicit direct-sum topology, we consider
an explicit biorthogonal system η = (φ,p) for the null space N(D2

R) = P1(Rd), the
space of affine functions on Rd. Put p0(x) := 1 and p`(x) := x`, ` = 1, . . . , d. Clearly
p is a basis for P1(Rd). Put φ0 := δ and φ` := δ(· − e`) − δ, ` = 1, . . . , d, where δ
denotes the Dirac impulse on Rd and e` denotes the `th canonical basis vector of Rd.
Then, (φ,p) is a biorthogonal system for P1(Rd). Indeed, we have 〈φ0, p0〉 = 1 and
〈φ`, p`〉 = p`(e`)− p`(0) = 1− 0 = 1, ` = 1, . . . , d. We also have

〈φ0, p`〉 = p`(0) = 0, ` = 1, . . . , d,

〈φ`, p0〉 = p0(e`)− p0(0) = 1− 1 = 0, ` = 1, . . . , d,

〈φ`, pn〉 = pn(e`)− pn(0) = 0 + 0 = 0, `, n = 1, . . . , d, ` 6= n.

Lemma 3.11. The space R BV2(Rd) equipped with the norm

‖f‖R BV2(Rd) := R TV2(f) + |f(0)|+
d∑
`=1

|f(e`)− f(0)|, (3.17)

where {e`}dk=1 denotes the canonical basis of Rd, has the following properties:

1. It is a Banach space.

2. For any x0 ∈ Rd, the Dirac impulse δ(· − x0) : f 7→ f(x0) is weak∗ continuous on
R BV2(Rd).

Proof. Consider the biorthogonal system η = (φ,p) defined above. The proof of
Item 1 follows from substituting η into Theorem 3.8. Next, from Theorem 3.8
R BV2(Rd) ∼= R BV2

η(Rd) ⊕ P1(Rd), showing that δ(· − x0), x0 ∈ Rd, is weak∗
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continuous on R BV2(Rd) is equivalent to showing that it is weak∗ continuous on
both R BV2

η(Rd) and P1(Rd).
Clearly δ(· − x0), x0 ∈ Rd, is continuous on P1(Rd) (since every element of

P1(Rd) is a continuous function). Then, since P1(Rd) is finite-dimensional, the space
of continuous linear functionals and weak∗ continuous linear functionals are the
same. Thus, δ(· − x0), x0 ∈ Rd, is weak∗ continuous on P1(Rd). It remains to
show that δ(· − x0), x0 ∈ Rd, is weak∗ continuous on R BV2

η(Rd). Let X be the
predual of R BV2

η(Rd), i.e., X′ = R BV2
η(Rd). We must show that δ(· − x0) ∈ X,

x0 ∈ Rd. The Riesz–Markov–Kakutani representation theorem states that the
predual of M2(Sd−1 × R) = Meven(Sd−1 × R) is C0,even(Sd−1 × R), the subspace of
even functions in C0(Sd−1 × R). From Theorem 3.8, we have that the following
relations of all these spaces.

R BV2
η(Rd) Meven(Sd−1 × R)

X C0,even(Sd−1 × R)

D2
R

D−2
R,η

dual

(D−2
R,η)

∗

dual

(D2
R)
∗

The above diagram shows that δ(· − x0) ∈ X if and only if
(
D−2

R,η

)∗{δ(· − x0)} ∈
C0,even(Sd−1 × R). From Theorem 3.8 we see that

(
D−2

R,η

)∗{δ(· − x0)} = g2,η(x0, ·)
defined in Lemma 3.7. By choosing ρ2 = |·|/2 in Lemma 3.7, we have

g2,η(x0, (α, t)) =
|αTx0 − t|

2
−

d∑
k=0

p`(x0)

〈
φ`,
|αT(·)− t|

2

〉
(∗)
=
|αTx0 − t|

2
−

[
|−t|

2
+

d∑
k=1

x0,k

(
|αk − t|

2
− |−t|

2

)]

=
|αTx0 − t|

2
− |t|

2

(
1−

d∑
k=1

x0,k

)
−

d∑
k=1

x0,k
|αk − t|

2
,
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where (∗) follows by substituting in the biorthogonal system η = (φ,p). Clearly
g2,η(x0, ·) is continuous and g2,η(x0, (α, t)) = g2,η(x0, (−α,−t)), so g2,η(x0, ·) is an
even function on Sd−1 × R. It remains to check that g2,η(x0, ·) is vanishing at infinity.
Certainly this is true. Indeed, for sufficiently large t we have

g2,η(x0, (α, t)) =
−αTx0 + t

2
− t

2

(
1−

d∑
k=1

x0,k

)
−

d∑
k=1

x0,k
−αk + t

2
= 0,

and for sufficiently small t we have

g2,η(x0, (α, t)) =
αTx0 − t

2
− −t

2

(
1−

d∑
k=1

x0,k

)
−

d∑
k=1

x0,k
αk − t

2
= 0.

Therefore, g2,η(x0, ·) ∈ C0,even(Sd−1 × R). Thus, the Dirac impulse δ(· −x0), x0 ∈ Rd,
is weak∗ continuous on R BV2(Rd).

The norm defined in Lemma 3.11 is also an upper bound on the Lipschitz constant
of the function.

Lemma 3.12. Let f ∈ R BV2(Rd). Then, f is Lipschitz continuous and satisfies the
Lipschitz bound

|f(x)− f(y)| ≤ ‖f‖R BV2(Rd) ‖x− y‖1,

for any x,y ∈ Rd.

Proof. To prove this, we appeal to the direct-sum decomposition of f ∈ R BV2(Rd)

in Theorem 3.8. Let η = (φ,p) be the biorthogonal system used to define the
R BV2(Rd)-norm. Then, from (3.13) in Theorem 3.8, f admits the direct-sum
decomposition

f(x) =

∫
Sd−1×R

g2,η(x, (α, t)) dµ(α, t) + cTx+ c0,

where µ = Dk
R f ∈ Meven(Sd−1 × R) and cTx + c0 = PP1(Rd),η{f}(x). From Theo-
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rem 3.8, we have that

‖f‖R BV2(Rd) = ‖µ‖M + ‖c‖1 + |c0|. (3.18)

We first bound the Lipschitz constant of g2,η(·, z = (α, t)). For any x,y ∈ Rd,

|g2,η(x, z)− g2,η(y, z)| =

∣∣∣∣∣
∣∣αTx− t

∣∣
2

−
∣∣αTy − b

∣∣
2

− |t|
2

[(
1−

d∑
k=1

xk

)
−

(
1−

d∑
k=1

yk

)]
−

d∑
k=1

(xk − yk)
|αk − t|

2

∣∣∣∣∣
≤
∣∣ ∣∣αTx− t

∣∣− ∣∣αTy − t
∣∣ ∣∣

2

+

∣∣∣∣∣
d∑

k=1

(xk − yk)
|t|
2
−

d∑
k=1

(xk − yk)
|αk − t|

2

∣∣∣∣∣
≤
∣∣ ∣∣αTx− t

∣∣− ∣∣αTy − t
∣∣ ∣∣

2
+

d∑
k=1

|xk − yk|
| |t| − |αk − t| |

2

(∗)
≤
∣∣αTx−αTy

∣∣
2

+
d∑

k=1

|xk − yk|
|αk|

2

(§)
≤ ‖α‖∞‖x− y‖1 + ‖α‖∞‖x− y‖1

2

(†)
≤ ‖x− y‖1

where (∗) holds from the reverse triangle inequality, (§) holds from Hölder’s inequality,
and (†) holds from the fact that ‖·‖∞ ≤ ‖·‖2 in finite-dimensional spaces combined
with ‖α‖2 = 1.

Next, we have for any x,y ∈ Rd,

|f(x)− f(y)| ≤
∫
Sd−1×R

|g2,η(x, (α, t))− g2,η(y, (α, t))| d|µ|(α, t) + |cT(x− y)|

≤
∫
Sd−1×R

‖x− y‖1 d|µ|(α, t) + ‖c‖∞‖x− y‖1

≤ ‖µ‖M(Sd−1×R)‖x− y‖1 + ‖c‖1‖x− y‖1

≤ ‖f‖R BV2(Rd) ‖x− y‖1,



69

where the third line follows from the fact that ‖·‖∞ ≤ ‖·‖1 in finite-dimensional
spaces and the fourth line follows from (3.18).

3.3.1 Learning with Shallow Neural Networks

From Lemma 3.11, we immediately have the following representer theorem for learning
with shallow ReLU networks as a corollary to the general representer theorem in
Theorem 3.2.

Corollary 3.13. Let `(·, ·) : R × R → R≥0 be a strictly convex, coercive, and
lower semicontinuous loss function in its second argument, {(xm, ym)}Mm=1 ⊂ Rd × R
be a given set of distinct data points with M > d + 1, and let the regularization
hyperparameter λ > 0 be fixed. Then, the solution set to the learning problem

V := arg min
f∈R BV2(Rd)

M∑
m=1

`(ym, f(xm)) + λR TV2(f) (3.19)

is nonempty, convex, and weak∗ compact. The solution set V is the weak∗ closure of
the convex hull of its extreme points, which can all be expressed as

fReLU(x) =

N0∑
n=1

vn ReLU(wT
nx− bn) + cTx+ c0,

where {vn}N0

n=1 ⊂ R \ {0}, {wn}N0

n=1 ⊂ Sd−1, {bn}N0

n=1 ⊂ R, c ∈ Rd, c0 ∈ R, and
N0 < M . The corresponding regularization cost, which is common to all solutions, is
R TV2(fReLU) =

∑N0

n=1|vn| = ‖v‖1.

Remark 3.14. In fact, one can show that the Dirac impulse is weak∗ continuous on
R BVk(Rd) for k ≥ 2 with an appropriate choice of biorthogonal system for the
polynomial null space.

What is remarkable about this result is that it implies that the solution set to the
variational problem in (3.19) is completely characterized by shallow ReLU networks
with a skip connection. Moreover, since the ReLU is positively homogeneous of degree
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1, if we consider the shallow ReLU network

fθ(x) =
N∑
n=1

vn ReLU(wT
nx− bn) + cTx+ c0,

where θ contains all the neural network parameters (i.e., weights and biases), and
we do not constrain wn ∈ Sd−1 and instead let wn ∈ Rd, we can reparameterize the
network as

fθ(x) =
N∑
n=1

vn‖wn‖2 ReLU(w̃T
nx− b̃n) + cTx+ c0,

where w̃n = wn/‖wn‖2 ∈ Sd−1 and b̃n = bn/‖wn‖2 ∈ R. Therefore, given a shallow
ReLU network with a skip connection, parameterized by θ, we have that4

R TV2(fθ) =
N∑
n=1

|vn|‖wn‖2.

The quantity in the above display, is sometimes referred to as the path-norm of the
neural network (Neyshabur et al., 2015a). Therefore, we can recast the variational
problem in (3.19) as the finite-dimensional neural network training problem

min
θ∈Θ

M∑
m=1

`(ym, fθ(xm)) + λ
N∑
n=1

|vn|‖wn‖2,

so long as N ≥ N0, where Θ = RK is the total number of scalar neural network
parameters. In particular, the solutions to the problem in the above display will
always be solutions to the variational problem in (3.19). It turns out that the training
problem in the above display is equivalent to the training problem that corresponds
to training a shallow ReLU network with weight decay. This is summarized in the
following theorem.

4Assuming the neural network is in “reduced form”, i.e., the weight bias pairs are unique up to
certain symmetries that arise due to the symmetries of the Radon domain.
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Theorem 3.15. Let Θ denote the space of neural network parameters for a shallow
ReLU network with a skip connection with N neurons. Then, the following two
optimization problems are equivalent (in the sense that their solution sets are the
same):

1. min
θ∈Θ

M∑
m=1

`(ym, fθ(xm)) + λ

N∑
n=1

|vn|‖wn‖2;

2. min
θ∈Θ

M∑
m=1

`(ym, fθ(xm)) +
λ

2

N∑
n=1

|vn|2 + ‖wn‖2
2.

Proof. The key idea behind the proof of this claim hinges on the fact that the ReLU
activation is positively homogeneous of degree 1. In particular, consider the nth
neuron x 7→ vn ReLU(wT

nx− bn). Due to the homogeneity of the ReLU, the weights
can be rescaled so that |vn| = ‖wn‖2, without changing the functional mapping of
the neuron. Therefore, minimizing |vn|2 + ‖wn‖2

2 is achieved when |vn| = ‖wn‖2, and
so at any solution to the second optimization in the theorem statement we have

|vn|2 + ‖wn‖2
2

2
= |vn|‖wn‖2,

and so the two optimization problems are equivalent.

The main takeaway from this result is that training a shallow ReLU network with
a skip connection with weight decay (to a global minimizer) results in a solution to
the variational problem in (3.19).

Remark 3.16. The connection between the neural network training problems in
Theorem 3.15 and the variational problem in (3.19) hiinges on the fact that the biases
remain unregularized. One could also consider neural network training problems where
the biases were also regularized and they would be related to variational problems
over a different Banach space.
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3.3.2 Learning with Deep Neural Networks

We can establish similar results connecting neural network training problems with
variational problems in the case of deep neural networks. The construction essentially
boils down to considering functions that are compositions of functions in R BV2(Rd)

in order to impose the compositional structure that arises in deep neural networks.
We remark that there are a few lines of related work concerning similar variational

formulations of learning with deep neural network. One line of work is concerned with
the “optimal shaping” of the activation functions in a deep neural network (Unser,
2019; Aziznejad et al., 2020; Bohra et al., 2020). In particular, Unser (2019) proves a
representer theorem regarding the optimal shaping of the activation functions. They
consider the standard fully-connected feedforward deep neural network architecture,
but allow the activation functions to be learnable. They impose a second-order
total variation penalty on the activation functions and so the optimal shaping of the
activation functions corresponds to linear splines with adaptive knot locations. We
remark that we use several techniques developed in Unser (2019); Aziznejad et al.
(2020) to prove our representer theorem in this paper, particularly in proving existence
of solutions to the variational problem we study. Finally, there is a line of work
regarding “deep kernel learning” (Bohn et al., 2019), in which they derive a representer
theorem for compositions of kernel machines. They consider a construction similar
to ours regarding the function space they study, but they consider compositions of
reproducing kernel Hilbert spaces and so the resulting solutions to their variational
problem do not take the form of a deep neural network.

First, define the vector-valued analogue of R BV2 as the Cartesian product

R BV2(Rd;RD) := R BV2(Rd)× · · · ×R BV2(Rd)︸ ︷︷ ︸
D times

. (3.20)

This space can be viewed as the Bochner space `1([D]; R BV2(Rd)), where [D] =

{1, . . . , D}, and can therefore be turned into a Banach space when equipped with
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the norm

‖f‖R BV2(Rd;RD) := ‖f‖`1([D];R BV2(Rd)) =
D∑
k=1

‖fk‖R BV2(Rd), (3.21)

where f = (f1, . . . , fD). We could equip any finite-dimensional norm on the output
vector to define an equivalent norm, but we work with the `1-norm for simplicity.
Next, consider the “deep” analogue of R BV2, defined as

R BV2
deep(Rd0 ; · · · ;RdL) :=

{
f = f (L) ◦ · · · ◦ f (1) :

f (`) ∈ R BV2(Rd`−1 ;Rd`),

` = 1, . . . , L

}
.

An immediate corollary to Lemma 3.12 is that functions in R BV2
deep(Rd0 ; · · · ;RdL)

are Lipschitz continuous.

Corollary 3.17. Let f = f (L) ◦ · · · ◦ f (1) ∈ R BV2
deep(Rd0 ; · · · ;RdL). Then, f is

Lipschitz continuous and satisfies the Lipschitz bound

‖f(x)− f(y)‖1 ≤

(
L∏
`=1

‖f (`)‖R BV2(Rd`−1 ;Rd` )

)
‖x− y‖1.

To this end, we have the folllowing representer theorem for learning with deep
ReLU networks.

Theorem 3.18. Let `(·, ·) : RdL×RdL → R≥0 be a lower semicontinuous loss function
in its second argument and let {(xm,ym)}Mm=1 ⊂ Rd0 × RdL be a given set of distinct
data points with M > 0, and let the regularization hyperparameter λ > 0 be fixed.
Then, there exists a solution the learning problem

min
f (`)∈R BV2(Rd`−1 ;Rd` )

`=1,...,L
f=f (L)◦···◦f (1)

M∑
m=1

`(ym, f(xm)) + λ
L∑
`=1

‖f (`)‖R BV2(Rd`−1 ;Rd` ) (3.22)

of the form
fdeep(x) = x(L), (3.23)
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where x(L) is computed recursively viax(0) := x,

x(`) := V(`)ρ(W(`)x(`−1) − b(`)) + C(`)x(`−1) + c
(`)
0 , ` = 1, . . . , L,

(3.24)

where ρ applies ρ = max{0, ·} component-wise and for ` = 1, . . . , L, V(`) ∈ Rd`×N(`),
W(`) ∈ RN(`)×d`−1, b(`) ∈ RN(`), C(`) ∈ Rd`×d`−1, and c(`)

0 ∈ Rd`, where N (`) ≤Md`.

Remark 3.19. In (3.22), we regularize the full Banach norms of the functions rather
than the R TV2-seminorms of each component to simplify the proof that there exist
solutions to the variational problem. Similar results hold when only considering
R TV2-seminorms in the regularizer, though more care has to be taken to prove that
solutions exist.

The neural network architecture that appears in (3.24) can be seen in Figure 3.3.
Moreover, this exact architecture was recently studied in the empirical work in Gol-
ubeva et al. (2021), and is referred to as a deep ReLU network with linear bottlenecks.
Since the variational problem in (3.22) is reminiscent of the variational problems stud-
ied in variational spline theory and since the resulting deep ReLU network solution
in (3.23) is a continuous piecewise-linear function, in a similar vein to Unser (2019),
we refer to such functions as deep ridge splines of degree one.

Remark 3.20. Since the regularizer in (3.22) directly controls the R BV2(Rd`−1 ;Rd`)-
norm of each layer, we see from Corollary 3.17, that the variational problem is
essentially regularizing a bound on the Lipschitz constant of the function.

Remark 3.21. The regularizer that appears in (3.22) can be replaced by

ψ0

(
L∑
`=1

ψ`

(
‖f (`)‖R BV2(Rd`−1 ;Rd` )

))
,

where ψ` : [0,∞)→ R, ` = 0, . . . , L is a strictly increasing and convex function, and
still admit a solution that takes the form of a deep neural network as in (3.23). Thus,
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Figure 3.3: The architecture of the deep neural network in (3.24) in the case of L = 3
hidden layers. The black nodes denote input nodes, the blue nodes denote ReLU
nodes, and the gray nodes denote linear nodes. Skip connection nodes are omitted
for clarity.

there are many choices of regularization that result in a representer theorem for deep
ReLU networks.

Remark 3.22. Notice that (3.23) is precisely the standard L-hidden layer deep ReLU
network architecture with rank-bounded weight matrices and skip connections. Indeed,
the weight matrix of the `th layer is A(`) := W(`+1)V(`). More specifically, by dropping
biases and skip connections for clarity, we see that fdeep(x) in (3.23) can be computed
recursively as 

x̃(0) := x,

x̃(`) := ρ(A(`−1)x̃(`−1)), ` = 1, . . . , L,

fdeep(x) := A(L)x̃(L),

(3.25)
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where 
A(0) := W(1),

A(`) := W(`+1)V(`), ` = 2, . . . , L− 1,

A(L) := V(L).

From the dimensions of V(`) and W(`) in Theorem 3.18, we see that for ` = 0, . . . , L,
rank(A(`)) ≤ min{Md`+1, d`} and rank(A(L)) ≤ dL. In a typical scenario, where the
{d`}L`=1 are of the same order, this implies that rank(A(`)) ≤ d`.

Remark 3.23. The architecture of the network in (3.24) is not restrictive of what
functions can be represented by such a network. In particular, the architecture in
(3.24) is as expressive as the standard deep ReLU network architecture with hidden
layer widths of d1, . . . , dL.

Before proving Theorem 3.18, we require two intermediary results.

Lemma 3.24. Consider the problem of interpolating the scattered data {(xm, ym)}Mm=1 ⊂
Rd×R with M > 0. Then, under the hypothesis of feasibility (i.e., ym = yn whenever
xm = xn), there exists a solution to the variational problem

min
f∈R BV2(Rd)

‖f‖R BV2(Rd) s.t. f(xm) = ym, m = 1, . . . ,M (3.26)

of the form

fReLU(x) =
N∑
n=1

vn ReLU(wT
nx− bn) + cTx+ c0, (3.27)

where N ≤M , vn ∈ R, wn ∈ Sd−1, bn ∈ R, c ∈ Rd, and c0 ∈ R.

Proof. Since the Dirac impulse is weak∗ continuous on R BV2(Rd) from Lemma 3.11,
by the abstract representer theorem in Unser (2021, Theorem 2), there exists a
solution to the variational problem (3.26). Let s be a (not necessarily unique) solution
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to (3.26). This solution must be a minimizer of

min
f∈R BV2(Rd)

R TV2(f) s.t.


f(xm) = ym, m = 1, . . . ,M,

f(0) = s(0),

f(e`) = s(e`), ` = 1, . . . , d.

By Corollary 3.13, there exists a solution to the above display that takes the form in
(3.27) with N ≤M neurons, so we can always find a solution to the original problem
in (3.26) of the form in (3.27).

Lemma 3.25. Consider the problem of interpolating the scattered data {(xm,ym)}Mm=1 ⊂
Rd×RD withM > 0. Then, under the hypothesis of feasibility (i.e., ym = yn whenever
xm = xn), there exists a solution to the variational problem

min
f∈R BV2(Rd;RD)

‖f‖R BV2(Rd;RD) s.t. f(xm) = ym, m = 1, . . . ,M (3.28)

of the form

fReLU(x) =
N∑
n=1

vn ReLU(wT
nx− bn) + Cx+ c0, (3.29)

where N ≤ MD, vn ∈ RD, wn ∈ Sd−1, bn ∈ R, C ∈ RD×d, and c0 ∈ RD. Moreover,
there always exists a solution of the form in (3.29) in which vn is 1-sparse.

Proof. By Lemma 3.11, the point evaluation operator is component-wise weak∗

continuous on R BV2(Rd;RD). Therefore, the measurement functionals

〈νm,k, f〉 := fk(xm), m = 1, . . . ,M, k = 1, . . . , D,

where f = (f1, . . . , fD) ∈ R BV2(Rd;RD) and 〈·, ·〉 denotes the pairing of R BV2(Rd;RD)

and its continuous dual, are contained in the predual of R BV2(Rd;RD), i.e., they
are weak∗ continuous on R BV2(Rd;RD). Moreover, these functionals are linearly
independent5. Therefore, the problem in (3.28) satisfies the hypotheses of Unser

5Assuming that xm 6= xn for m 6= n.
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(2021, Theorem 2) and so a solution to (3.28) exists. Next, note that we can rewrite
the problem in (3.28) as

min
f=(f1,...,fD)

fk∈R BV2(Rd)
k=1,...,D

D∑
k=1

‖fk‖R BV2(Rd) s.t. fk(xm) = ym,k,

m = 1, . . . ,M

k = 1, . . . , D,

where ym = (ym,1, . . . , ym,D) ∈ RD. Let s̃ = (s̃1, . . . , s̃D) be a (not necessarily unique)
solution to (3.28). From the above display we see that this solution must satisfy

s̃k ∈ arg min
f∈R BV2(Rd)

‖f‖R BV2(Rd) s.t. f(xm) = ym,k, m = 1, . . . ,M, (3.30)

for k = 1, . . . , D. To see this, note that if the above display did not hold, it would
contradict the optimality of s̃. By Lemma 3.24, there exists a solution to the above
display that takes the form in (3.27) with Nk ≤ M neurons. By combining these
solutions into a single vector-valued function with potential combining of neurons6

we see that there exists a solution to the original problem in (3.28) that takes the
form in (3.29) with N ≤ N1 + · · ·+ND ≤MD neurons. If no neurons combine, each
vn is 1-sparse.

Remark 3.26. One could also write a solution of (3.28) such that each output is
completely independent of any other output, i.e., the outputs are completely decoupled.
This corresponds to fitting the data with D separate single-hidden layer ReLU
networks. This follows from the fact that sk is a minimizer to the problem in (3.30).
This corresponds to the representation in (3.29) having each vn being 1-sparse.

Proof of Theorem 3.18. Given f = f (L) ◦· · ·◦f (1) such that f (`) ∈ R BV2(Rd`−1 ;Rd`),
` = 1, . . . , L, write

J(f) := J(f (1), . . . , f (L)) :=
M∑
m=1

`(ym, f(xm)) + λ

L∑
`=1

‖f (`)‖R BV2(Rd`−1 ;Rd` )

6This would happen in the event that s̃k and s̃`, k 6= `, shared a common neuron.
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for the objective value of f . Next, consider an arbitrary g = g(L) ◦ · · · ◦ g(1) such
that g(`) ∈ R BV2(Rd`−1 ;Rd`), ` = 1, . . . , L, with objective value C := J(g). We
may transform the unconstrained problem in (3.22) into the equivalent constrained
problem

min
f (`)∈R BV2(Rd`−1 ;Rd` )

`=1,...,L
f=f (L)◦···◦f (1)

J(f) s.t. ‖f (`)‖R BV2(Rd`−1 ;Rd` ) ≤ C/λ, ` = 1, . . . , L. (3.31)

This transformation is valid since any function that does not satisfy the constraints
in (3.31) has a strictly larger objective value than g, and is therefore not in the
solution set. For f0 = f

(L)
0 ◦ · · · ◦ f (1)

0 , f (`)
0 ∈ R BV2(Rd`−1 ;Rd`), ` = 1, . . . , L, we

show that the map f
(˜̀)
0 7→ J(f0), for a fixed ˜̀ ∈ {1, . . . , L}, is weak∗ lower semi-

continuous on R BV2(Rd˜̀−1 ;Rd˜̀). First notice that the map f (˜̀)
0 7→ f0(x0), for any

x0 ∈ Rd, is component-wise weak∗ continuous on R BV2(Rd˜̀−1 ;Rd˜̀). Indeed, since
each f

(`)
0 , ` = 1, . . . , L, is component-wise continuous by Lemma 3.12 and since

the point evaluation is component-wise weak∗ continuous by Lemma 3.11, the map
f

(˜̀)
0 7→ f

(L)
0 ◦ · · · ◦ f (1)

0 (x0) is made up of compositions of component-wise continuous
and component-wise weak∗ continuous functions, and is therefore itself component-
wise weak∗ continuous on R BV2(Rd˜̀−1 ;Rd˜̀). Next, since the loss function is lower
semi-continuous and every norm is weak∗ continuous on its corresponding Banach
space, we have that f (˜̀)

0 7→ J(f0) is weak∗ lower semi-continuous on R BV2(Rd˜̀−1 ;Rd˜̀).
Therefore, (f

(1)
0 , . . . , f

(L)
0 ) 7→ J(f) is weak∗ lower semi-continuous over the Cartesian

product search space7 in (3.31). Finally, by the Banach–Alaoglu theorem (Rudin,
1991, Chapter 3), the feasible set in (3.31) is weak∗ compact. Thus, there exists a
solution to (3.31) (and subsequently (3.22)) by the Weierstrass extreme value theorem
on general topological spaces (Kurdila and Zabarankin, 2006, Chapter 5).

Let s̃ = s̃(L) ◦· · ·◦ s̃(1) be a (not necessarily unique) solution to (3.22). By applying
s̃ to each data point xm, m = 1, . . . ,M , we can recursively compute the intermediate
vectors zm,` ∈ Rd` as follows

7The search space is the Cartesian product R BV2(Rd0 ;Rd1)× · · · ×R BV2(RdL−1 ;RdL).
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• Initialize zm,0 := xm.

• For each ` = 1, . . . , L, recursively update zm,` := s̃(`)(zm,`−1).

The solution s̃ must satisfy

s̃(`) ∈ arg min
f∈R BV2(Rd`−1 ;Rd` )

‖f‖R BV2(Rd`−1 ;Rd` ) s.t. f(zm,`−1) = zm,`, m = 1, . . . ,M,

for ` = 1, . . . , L. To see this, note that if the above display did not hold, it would
contradict the optimality of s̃. By Lemma 3.25, there always exists a solution to the
above display that enforces the form of the solution in (3.23).

3.3.3 New Regularization Methods for Neural Networks

With the results developed in this section, we have several new, principled forms of
regularization for deep neural networks. As we saw in Section 3.3.1, the solutions to
the problem of training a shallow ReLU network with weight decay or path-norm
regularization are minimum R TV2-seminorm solutions to data-fitting variational
problems over R BV2(Rd). This variational formulation of learning, particularly
the results about deep neural networks developed in Section 3.3.2, provides several
extensions/modifications of weight decay and path-norm regularization as well as
provides new theoretical support and insight for a number of empirical findings in
deep learning. In particular, these results characterize the functional properties
of neural networks trained with weight decay—the functions they represent are
regular in a precise (i.e., R BV2) sense. The optimal solutions to the variational
problem require skip connections between layers, which provides a new theoretical
explanation for the benefits skip connections provide in practice (He et al., 2016).
The sparse nature of our solutions sheds new light on the roles of sparsity and
redundancy in deep learning, ranging from “drop-out” (Hinton et al., 2012b) to the
“lottery ticket hypothesis” (Frankle and Carbin, 2018). And finally, low-rank weight
matrices are a natural by-product of our variational formulation that has precedent
in practical studies of deep neural networks; it has been empirically observed that
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low-rank weight matrices can speed up learning (Ba and Caruana, 2014) and improve
accuracy (Golubeva et al., 2021), robustness (Sanyal et al., 2019), and computational
efficiency (Wang et al., 2021) of deep neural networks.

Given a deep neural network s = s(L) ◦ · · · ◦s(1) as in (3.23), by a direct calculation
we have

L∑
`=1

‖s(`)‖R BV2(Rd`−1 ;Rd` ) =
L∑
`=1

N(`)∑
n=1

‖v(`)
n ‖1‖w(`)

n ‖2 +
D∑
k=1

(
|s(`)
k (0)|+

d∑
m=1

|s(`)
k (em)− s(`)

k (0)|

),
where v(`)

n is the nth column of V(`) and w(`)
n is the nth row of W(`). Therefore, the

solutions to the finite-dimensional neural network training problem

min
θ∈Θ

M∑
m=1

`(ym, fθ(xm))+λ
L∑
`=1

N(`)∑
n=1

‖v(`)
n ‖1‖w(`)

n ‖2 +
D∑
k=1

(
|f (`)
θ,k(0)|+

d∑
m=1

|f (`)
θ,k(em)− f (`)

θ,k(0)|

)
(3.32)

are solutions to the variational problem in (3.22) so long as N (`) ≥ Md`, where
{(xm,ym)}Mm=1 ⊂ Rd0 × RdL is a scattered data set, `(·, ·) is an arbitrary non-
negative lower semi-continuous loss function, and λ > 0 is an adjustable regularization
parameter. By the same argument as in the proof of Theorem 3.15, the problem in
the above display is equivalent to the problem

min
θ∈Θ

M∑
m=1

`(ym, fθ(xm))+λ
L∑
`=1

(
‖V(`)‖2

1,2 + ‖W(`)‖2
F

2
+

D∑
k=1

(
|f (`)
θ,k(0)|+

d∑
m=1

|f (`)
θ,k(em)− f (`)

θ,k(0)|

))
,

(3.33)
where

‖V(`)‖2
1,2 :=

N(`)∑
n=1

‖v(`)
n ‖2

1

is the mixed `1`2-norm of V(`) and ‖·‖F is the usual Frobenius norm of a matrix. The
problems in (3.32) and (3.33) take the form of neural network training problems with
new, principled forms of regularization. Moreover, due to the sparsity-promoting
nature of the R BV2(Rd`−1 ;Rd`)-norms, the regularizers that appear in (3.32) and
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(3.33) promote sparse (in the sense of the number of active neurons) deep ReLU
network solutions.

One could also consider a different variational problem from (3.22) in which only
the R TV2-seminorms are penalized rather than the R BV2-norms. In that case, the
resulting (equivalent) regularizers would be

L∑
`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w(`)

k ‖2 (3.34)

and
1

2

L∑
`=1

‖V(`)‖2
1,2 + ‖W(`)‖2

F. (3.35)

In this setting, with a particular choice of {ψ`}L`=0 in Remark 3.21, we may also
consider the regularizer

L∏
`=1

K(`)∑
k=1

‖v(`)
k ‖1‖w(`)

k ‖2. (3.36)

We can view (3.35) as a modification/extension of the regularizer that corresponds
to training a deep neural network with weight decay. We can also view (3.34) and
(3.36) as modificatins/extensions of the well-known path-norm regularizer for deep
neural networks. In fact, the regularizer that appears in (3.36) is essentially an upper
bound on the standard path-norm for deep neural networks. Indeed, consider a deep
neural network mapping Rd → R as in (1.13). The usual path-norm of such a neural
network takes the form

N(L)∑
nL=1

N(L−1)∑
nL−1=1

· · ·
N(1)∑
n1=1

d∑
n0=1

|an0,n1||an1,n2| · · · |anL−1,nL||anL|, (3.37)

where an`,n`+1
denotes the (n`, n`+1)th entry in A(`) and anL denotes the nLth entry

in a(L). We refer the reader to Neyshabur et al. (2015a, 2017, 2015c); Barron and
Klusowski (2019) for more details about the path-norm for deep neural networks. If
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we consider the parameterization of a deep neural network as in (3.23), we have that

|an`,n`+1
| = |v(`)

n

T
w(`+1)
n | ≤ ‖v(`)

n ‖2‖w(`+1)
n ‖2 ≤ ‖v(`)

n ‖1‖w(`+1)
n ‖2. (3.38)

Therefore,

L∏
`=1

N(`)∑
n=1

‖v(`)
N ‖1‖w(`)

N ‖2 =
N(L)∑
nL=1

· · ·
N(1)∑
n1=1

‖w(1)
n1
‖2‖v(1)

n1
‖1‖w(2)

n2
‖2‖v(2)

n2
‖1 · · · ‖w(L)

nL
‖2‖v(L)

nL
‖1

≥
N(L)∑
nL=1

· · ·
N(1)∑
n1=1

‖w(1)
n1
‖2 |an1,n2| · · ·

∣∣anL−1,nL

∣∣ ‖v(L)
nL
‖1,

where the last line holds from (3.38). We see that the last line in the above display
is the same as the path-norm in (3.37), apart from how it treats weights in the first
and last layers. We also remark that the work of Barron and Klusowski (2019), the
authors show that the path-norm in (3.37) controls the Rademacher and Gaussian
complexity of deep ReLU networks.
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Chapter 4

Approximation and Estimation with
Ridge Splines

A fundamental problem in approximation theory (resp. nonparametric statistics) is
to understand the best1 approximation (resp. estimation error) rate for functions
that lie in certain function spaces, with respect to some kind of dictionary. These
rates are typically measured with respect to the L2- or L∞-norm. In order to quantify
these rates with respect to these norms, we require the Banach spaces of interest
to be continuously embedded in an L2- or L∞-space. In this dissertation, we are
interested in the Banach spaces R BVk(Rd), k ∈ N. Clearly these spaces are not
continuously embedded in L2(Rd) or L∞(Rd). Indeed, polynomials of degree strictly
less than k are included in R BVk(Rd), which are not in L2(Rd) or L∞(Rd). Thus, in
order to discuss L2- and L∞-approximation (resp. estimation error) rates for such
functions, we must consider the restriction of these functions to a bounded domain
Ω ⊂ Rd so that it makes sense to discuss the L2(Ω) and L∞(Ω)-norms of a function
in R BVk(Ω).

In this chapter, we first study the approximation rates for functions in the appropri-
ately defined spaces R BVk(Ω), k ∈ N, where Ω ⊂ Rd is a bounded domain. We show
that the approximation rates do not grow with the input dimension, shedding light

1Best in that no other approximation (resp. estimation) scheme can result in a better rate.
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on the phenomenon that neural networks seem to break the curse of dimensionality.
These results follow by showing that R BVk(Ω) is equivalent (as a Banach space) to
the so-called kth-order variation space and invoking previously derived approximation
rates for the variation spaces.

We also discuss what kinds of functions lie in R BVk(Ω). In particular, we show
that these spaces are a mixed variation space, a term coined by Donoho (2000) to
refer to function spaces that contain functions that are isotropic and very regular in
all directions as well as functions that are anisotropic and very unregular in only a few
directions. Using these results, we study the problem of estimating (i.e., learning) a
function from noisy point evaluation measurements with shallow ReLU networks, and
show that the mean-squared error (i.e., expected L2-error) of the learned function from
the data-generating function also does not grow with the input dimension. Finally,
we show that linear methods (which include kernel methods) are suboptimal for
the estimation problem by quantifying an explicit gap between linear and nonlinear
estimation method via minimax rates.

4.1 R BVk(Ω): Restricting R BVk(Rd) to a Bounded

Domain Ω ⊂ Rd

In this section we define the R BVk-spaces, k ∈ N, on a bounded domain. We
define the R BVk-spaces on a bounded domain Ω ⊂ Rd using the standard approach
of considering restrictions of functions in R BVk(Rd). This provides the following
definition:

R BVk(Ω) :=
{
f ∈ D′(Ω) : ∃g ∈ R BVk(Rd) s.t. g|Ω = f

}
,

where D′(Ω) denotes the space of distributions on Ω. Similarly, we can define the
kth-order total variation in the (filtered) Radon domain of a function f defined on a
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bounded domain Ω ⊂ Rd:

R TVk
Ω(f) := inf

g∈R BV2(Rd)
R TVk(g) s.t. g|Ω = f. (4.1)

This gives an alternative characterization of R BVk(Ω) as

R BVk(Ω) =
{
f ∈ D′(Ω) : R TVk

Ω(f) <∞
}
.

We also remark that since R BVk(Rd) is a Banach space, R BVk(Ω) is also a Banach
space. In particular, it is a Banach space when equipped with the norm

‖f‖R BVk(Ω) := inf
g∈R BV2(Rd)

‖g‖R BVk(Rd) s.t. g|Ω = f.

4.1.1 Extensions From R BVk(Ω) to R BVk(Rd)

In this section we discuss how to identify functions in R BVk(Ω) with functions in
R BVk(Rd), where Ω ⊂ Rd is a bounded domain.

Lemma 4.1. Let Ω ⊂ Rd be a bounded domain. Given f ∈ R BVk(Ω), there exists
an extension fext ∈ R BVk(Rd) that admits an integral representation

fext(x) =

∫
Sd−1×R

ρk(α
Tx− t) dµ(α, t) + q(x),

where q(·) is a polynomial of degree < k, such that suppµ ⊂ ZΩ, where

ZΩ := {z = (α, t) ∈ Sd−1 × R : {x ∈ Rd : αTx = t} ∩ Ω 6= ∅}, (4.2)

where A denotes the closure of the set A. This extension has the property that
fext|Ω = f and

R TVk
Ω(f) = R TVk(fext) = ‖µ‖M(Sd−1×R) = ‖µ ZΩ‖M(ZΩ).
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Remark 4.2. The set ZΩ simply excludes activation functions that are polynomial
functions (no activation threshold) when restricted to Ω.

Proof. Let η = (φ,p) be a biorthogonal system for R BVk(Rd). Given f ∈ R BVk(Ω),
suppose there exists an extension f̃ext such that f̃ext

∣∣∣
Ω

= f and R TVk
Ω(f) =

R TVk(f̃ext) whose direct-sum decomposition from Theorem 3.8 takes the form

f̃ext =

∫
Sd−1×R

gk,η(·, z) dµ̃(z) + q̃, (4.3)

and supp µ̃ 6⊂ ZΩ. Next, notice that given gk,η(·, z), where z 6∈ ZΩ, we have that
gk,η(·, z)|Ω is a polynomial of degree < k. Therefore, we can find another extension fext
such that fext|Ω = f where R TV2(fext) < R TV2(f̃ext) = ‖µ̃‖M(Sd−1×R) by absorbing
every gk,η(·, z) where z 6∈ ZΩ in the integrand of (4.3) into the polynomial term in
the direct-sum decomposition, a contradiction. Therefore, there exists an extension
fext ∈ R BV2(Rd) that admits an integral representation

fext(x) =

∫
Sd−1×R

gk,η(x, (α, t)) dµ(α, t) + q(x) (4.4)

such that suppµ ⊂ ZΩ, where µ is an even (resp. odd) measure when k is even (resp.
odd) and q is a polynomial of degree < k.

Next, since Ω ⊂ Rd is a bounded domain, ZΩ ⊂ Sd−1 × R is also a bounded
domain. Therefore, since suppµ ⊂ ZΩ, we can write

fext(x) =

∫
ZΩ

ρk(α
Tx− t) dµ(α, t) + q̃(x), (4.5)

where we combine the polynomial terms from gk,η (defined in Lemma 3.7) and q

into the new polynomial q̃. Moreover, with the above representation we have that
R TVk

Ω(f) = ‖µ ZΩ‖M(ZΩ). We also remark that although µ is even (resp. odd)
when k is even (resp. odd), we can replace µ with a generic, i.e., not restricted to
being even/odd, measure µ̃ ∈M(ZΩ) by noting that integrating against an even/odd
measure in (4.4) is exactly the same as integrating against a generic measure due to
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the symmetry/antisymmetry of ρk defined in (1.17). This generic, i.e., not even/odd,
measure has the same M-norm as the even/odd measure.

Remark 4.3. When
Ω = Bd1 :=

{
x ∈ Rd : ‖x‖2 ≤ 1

}
, (4.6)

the Euclidean unit ball in Rd, we have that ZΩ from (4.2) is exactly

ZΩ = Sd−1 × [−1, 1].

Therefore, from Theorem 4.1, we can identify functions in f ∈ R BVk(Bd1) with
integral representations of the form

f(x) =

∫
Sd−1×[−1,1]

ρk(α
Tx− t) dµ(α, t) + c(x), x ∈ Bd1.

Remark 4.4. When d = 1, the space R BVk(Bd1) is exactly the classical kth-order
bounded variation spaces defined on [−1, 1]:

BVk[−1, 1] :=
{
f ∈ D[−1, 1] : TVk

[−1,1](f) <∞
}
,

where
TVk

[−1,1](f) := ‖Dk f‖M[−1,1],

where D is the (distributional) derivative operator. Moreover, we also have that
R TVk

[−1,1](f) = TVk
[−1,1](f).

4.1.2 Representer Theorems over R BVk(Ω)

It turns out that data-fitting variational problems over R BVk(Ω) also admit rep-
resenter theorems similar to Theorem 3.2. This is summarized in the following
theorem.

Theorem 4.5. Consider the following setting:
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1. The loss function `(·, ·) : R× R→ R≥0 is convex, coercive, and lower semicontin-
uous in its second argument.

2. The linear measurement functionals hm : R BVk(Ω) → R : f 7→ 〈hm, f〉, where
m = 1, . . . ,M , are linearly independent and weak∗ continuous.

3. The number of measurements M is strictly greater than the dimension of the null
space Pk−1(Ω), the space of polynomials of degree k − 1.

4. The regularization hyperparameter λ > 0 is fixed.

Then, for any fixed y ∈ RM , the solution set to the data-fitting variational problem

V := arg min
f∈R BVk(Ω)

M∑
m=1

`(ym, 〈hm, f〉) + λR TVk
Ω(f)

is nonempty, convex, and weak∗ compact. If `(·, ·) is strictly convex (or if it imposes
the equality ym = 〈hm, f〉, for m = 1, . . . ,M), then the solution set V is the weak∗

closure of the convex hull of its extreme points, which can all be expressed as

fridge(x) =

N0∑
n=1

vnρk(w
T
nx− bn) + c(x),

where {vn}N0

n=1 ⊂ R \ {0}, {(wn, bn)}N0

n=1 ⊂ ZΩ as defined in (4.2), c(·) ∈ Pk−1(Ω),
and N0 < M . The corresponding regularization cost, which is common to all solutions,
is R TVk(fridge) =

∑N0

n=1|vn| = ‖v‖1.

Proof. The proof is identical to the proof of Theorem 3.2 except we use the direct-sum
decomposition from (4.4), which establishes an isometric isomorphism from R BVk(Ω)

to Mk(ZΩ)× Pk−1(Ω), where Mk(ZΩ) is the subspace of even (resp. odd) measures
when k is even (resp. odd).
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4.1.3 Applications to Learning with Shallow Neural Networks

Just as in Corollary 3.13, we can establish the weak∗ continuity of the Dirac impulse
δ(· − x0), x0 ∈ Ω. In fact, on a bounded domain, the argument is even simpler
than the proof of Lemma 3.11 since it boils down to the continuity2 of the function
gk,η(x0, ·)|Ω since M(ZΩ) = (C(ZΩ))′, which is clearly true for k ≥ 2. We instantiate
this result explicitly in the case of the ReLU in the following corollary.

Corollary 4.6. Let `(·, ·) : R× R→ R≥0 be a strictly convex, coercive, and lower
semicontinuous loss function in its second argument, {(xm, ym)}Mm=1 ⊂ Ω× R, where
Ω ⊂ Rd is a bounded domain, be a given set of distinct data points with M > d+ 1,
and let the regularization hyperparameter λ > 0 be fixed. Then, the solution set to the
learning problem

V := arg min
f∈R BV2(Ω)

M∑
m=1

`(ym, f(xm)) + λR TV2
Ω(f) (4.7)

is nonempty, convex, and weak∗ compact. The solution set V is the weak∗ closure of
the convex hull of its extreme points, which can all be expressed as

fReLU(x) =

N0∑
n=1

vn ReLU(wT
nx− bn) + cTx+ c0,

where {vn}N0

n=1 ⊂ R \ {0}, {(wn, bn)}N0

n=1 ⊂ ZΩ as defined in (4.2), c ∈ Rd, c0 ∈ R,
and N0 < M . The corresponding regularization cost, which is common to all solutions,
is R TV2(fReLU) =

∑N0

n=1|vn| = ‖v‖1.

Similar to the variational problem in Corollary 3.13, the variational problem
in (4.7) can also be recast as a finite-dimensional neural network training problem
with regularization terms corresponding to path-norm regularization and training a
neural network with weight decay. For simplicity, suppose that Ω = Bd1 as defined

2Recall that in the proof of Lemma 3.11, we had to established that the function g2,η(x0, ·) was
not only continuous, but also vanished at ±∞.
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in (4.6). We can recast the variational problem in (4.7) as the following equivalent
finite-dimensional neural network training problems

1. min
θ∈Θ

M∑
m=1

`(ym, fθ(xm)) + λ

N∑
n=1

|vn|‖wn‖2;

2. min
θ∈Θ

M∑
m=1

`(ym, fθ(xm)) +
λ

2

N∑
n=1

|vn|2 + ‖wn‖2
2,

so long as N ≥ N0, where we are using the same notation as in Theorem 3.15, where
Θ is now constrained so that

{
x ∈ Rd : wT

nx− bn
}
intersects Bd1 for all n = 1, . . . , N .

The argument for this is identical to the argument in Theorem 3.15 and discussion
that precedes the theorem statement.

4.2 R BVk(Ω) and Previously Studied Function

Spaces

Understanding the properties of shallow neural networks and their associated function
spaces has received much attention since the 1990s starting with the seminal work of
Barron (1993) in which he studied the approximation properties of shallow sigmoidal
networks in the so-called first-order spectral Barron space. The fundamental idea
is to consider functions that are synthesized from continuously many neurons. Such
functions can be expressed as an integral of a neural activation function against a
finite Radon measure. This idea was adopted by a number of authors in the study of
the so-called variation spaces of shallow neural networks (Kurková and Sanguineti,
2001; Mhaskar, 2004; Bach, 2017; Siegel and Xu, 2021b).

In this section we discuss how R BV2(Ω) is related to previously studied neural
function spaces, including the variation spaces. For simplicity we suppose that Ω = Bd1
as defined in (4.6). Similar results as those stated in the sequel can be derived for more
general bounded domains Ω ⊂ Rd, provided they have a sufficiently nice boundary.
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4.2.1 Variation Spaces

Following the setup from Siegel and Xu (2021b), in the case of shallow neural networks
with truncated power activation functions, the associated variation space for functions
defined on Bd1 is defined as

V k(Bd1) :=

{
f ∈ D′(Bd1) : f =

∫
Sd−1×[−2,2]

(αT(·)− t)k−1
+ dµ(α, t)

}
,

where k ∈ N and µ ∈ M(Sd−1 × [−2, 2]). The reason for integrating the t variable
over [−2, 2] is so that polynomials of degree at most k − 1 are included in this space
(see Siegel and Xu (2021b, Section 3) for more details). This space is known to be a
Banach space when equipped with the norm

‖f‖V k := inf
µ∈M(Sd−1×[−2,2])

‖µ‖M

s.t. f =

∫
Sd−1×[−2,2]

(αT(·)− t)k−1
+ dµ(α, t).

We now show that R BVk(Bd1) and V k(Bd1) are in fact the same space, providing
evidence that R BV2(Bd1) is the natural function space associated to shallow neural
networks.

Theorem 4.7. R BVk(Bd1) and V k(Bd1) are equivalent Banach spaces (i.e., Banach
spaces with equivalent norms).

Proof. Given f ∈ V k(Bd1), we have the representation

f(x) =

∫
Sd−1×[−2,2]

(αTx− t)k−1
+ dµ(α, t), (4.8)

where ‖f‖V k = ‖µ‖M (the inf in the definition of the V k-norm is achievable due
to Korolev (2021, Proposition 3.21)). Next, given g ∈ R BVk(Bd1), we have from
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Remark 4.3 the representation

g(x) =

∫
Sd−1×[−1,1]

ρk(α
Tx− t) dν(α, t) + c(x),

where R TVk
Bd1

(g) = ‖ν‖M. Since ρk and (·)k−1
+ only differ by a multiplicative factor

and a polynomial of degree at most k − 1, it is clear that we can represent any
function in V 2(Bd1) with the representation of R BV2(Bd1) and vice-versa. Therefore,
R BV2(Bd1) = V 2(Bd1) (as sets). To see why the norms are equivalent, note that the
only difference between the norms is how they handle the null space of the R TVk

Bd1
(·)

seminorm. Since this null space is the space of polynomials of degree at most k − 1,
which is finite-dimensional, the norms are equivalent since all norms are equivalent
on finite-dimensional spaces. Therefore, the norms R BVk(Bd1) and V k(Bd1) have
equivalent norms.

4.2.2 Spectral Barron and Sobolev Spaces

The spectral Barron spaces were first studied by Barron (1993). On Rd, these spaces
are defined by

Bs(Bd1) :=
{
f ∈ S′(Rd) : ‖(1 + ‖·‖2)sf̂(·)‖M <∞

}
.

In fact, one can show that these are Banach spaces when equipped with the norm

‖f‖Bs := ‖(1 + ‖·‖2)sf̂(·)‖M

that are isometrically isomorphic to M(Rd) (Parhi and Nowak, 2022b). On a bounded
domain Ω ⊂ Rd, these spaces are defined by

Bs(Ω) :=
{
f ∈ D′(Ω) : ∃g ∈ Bs(Rd) s.t. g|Ω = f

}
,
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which are Banach spaces when equipped with the norm

‖f‖Bs(Ω) := inf
f∈Bs(Rd)

‖g‖Bs(Rd) s.t. g|Ω = f.

where s ≥ 0 is any real number. In particular, Barron (1993) studied the first-order
spectral Barron space on the Euclidean ball Bd1, B1(Bd1), in his seminal work about
approximation and estimation with shallow sigmoidal networks. The higher-order
variants were studied by a number of authors (Klusowski and Barron, 2018; Xu,
2020; Siegel and Xu, 2021b). In particular, it was shown by Klusowski and Barron
(2018); Xu (2020); Siegel and Xu (2021b) that Bk(Bd1)

c.
↪→ V k(Bd1). Therefore, by

Theorem 4.7, we have that Bk(Bd1)
c.
↪→ R BVk(Bd1). Moreover, it was shown by Xu

(2020, Lemma 2.5) that
Hd/2+k+ε(Bd1)

c.
↪→ Bk(Bd1),

where ε > 0 and Hs(Bd1) denotes the (fractional) sth-order L2-Sobolev space. There-
fore, we have the continuous embeddings

Hd/2+k+ε(Bd1)
c.
↪→ Bk(Bd1)

c.
↪→ R BVk(Rd).

4.2.3 Discussion

The previously stated results say that very regular functions (those with order d
derivatives in L2(Bd1)) are contained in R BVk(Bd1). On the other hand, functions
that are not very regular are also in R BVk(Bd1). For example, take any univariate
function g ∈ BVk(R) and use it as the profile of a ridge function

f(x) = g(αTx), x ∈ Bd1, (4.9)

where α ∈ Sd−1. The function g barely has k derivatives, yet f ∈ R BVk(Bd1) while
f 6∈ Hd/2+k+ε(Bd1). Although this function may not be very regular, it only varies
in the single direction α ∈ Sd−1. This shows that R BVk(Bd1) can be viewed as a
mixed variation space in the sense of Donoho (2000) in that it includes highly regular
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functions that are very isotropic, e.g., functions from the Sobolev space Hd/2+k+ε(Bd1)

or less regular functions that are highly anisotropic, e.g., the ridge function in (4.9).

4.3 Nonlinear Approximation with Ridge Splines

A well-known result in approximation theory, first due to Maurey and Pisier (1981),
is that given a dictionary of atoms contained in a Hilbert space H, the closure
(with respect to the topology of H) of the convex, symmetric hull of the dictionary
is immune to the curse of dimensionality (Pisier, 1981; Jones, 1992; Barron, 1993;
DeVore and Temlyakov, 1996; Barron et al., 2008). This means that given a function f
in the closure of the convex, symmetric hull of the dictionary, there exists an N -term
superposition of atoms from the dictionary fN such that ‖f − fN‖H . N−1/2, which
does not depend on the input dimension of the function. This fact was fundamental
to the approximation rates (which do not grow with the input dimension) derived for
functions belonging to the spectral Barron spaces.

It turns out that the unit-ball in the variation spaces of shallow neural networks can
be characterized by the closure of the convex, symmetric hull of a dictionary of neural
activation functions and are therefore also immune to the curse of dimensionality (Bach,
2017; Siegel and Xu, 2021b). We use results from (Bach, 2017; Siegel and Xu, 2021b)
to readily derive approximation rates for functions in R BVk(Ω) that are immune to
the curse of dimensionality. Again, for simplicity we suppose that Ω = Bd1 as defined
in (4.6).

Theorem 4.8. Given f ∈ R BVk(Bd1), there exists a kth-order ridge spline with N
neurons, denoted fN , such that

‖f − fN‖L2 .d R TVk
Bd1

(f)N−
1
2
− 2k−1

2d .

Moreover, this rate cannot be improved.
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Proof. Given f ∈ R BVk(Bd1), we have from Remark 4.3 the representation

f(x) =

∫
Sd−1×[−1,1]

ρk(α
Tx− t) dµ(α, t) + c(x).

It is known from the work of Siegel and Xu (2021b) that best L2 approximation rate
for the integral in the above display by a superposition of N neurons of the form
x 7→ ρk(α

Tx− t), α ∈ Sd−1 and t ∈ [−1, 1], denoted f̃N , is∥∥∥∥∫
Sd−1×[−1,1]

ρk(α
T(·)− t) dµ(α, t)− f̃N

∥∥∥∥
L2

.d ‖µ‖MN
− 1

2
− 2k−1

2d .

Next, since ‖µ‖M = R TVk
Bd1

(f), the result follows by choosing fN := f̃N + c.

Remark 4.9. As d→∞, Theorem 4.8 say that the approximation rate is N−1/2 and
is therefore immune to the curse of dimensionality.

In the special case of k = 2, using results regarding the approximation of zonoids
by zonotopes from Matoušek (1996) (see also Bach (2017, Proposition 1)), we have
that the result of Theorem 4.8 also holds with respect to the L∞(Bd1)-norm3. This is
summarized in the following theorem.

Theorem 4.10. Given f ∈ R BV2(Bd1), there exists a second-order ridge spline (i.e.,
shallow ReLU network with a skip connection) with N neurons, denoted fN , such that

‖f − fN‖L∞ .d R TV2
Bd1

(f)N−
1
2
− 3

2d .

Moreover, this rate cannot be improved.

Remark 4.11. The rates in Theorems 4.8 and 4.10 are nonlinear approximation rates.
Using results from Siegel and Xu (2021b) bounding the Kolmogorov N -widths of
the variation spaces V k(Bd1), we have that the best linear approximation rates for
R BVk(Bd1) scale like N−

2k−1
2d , which suffers the curse of dimensionality.

3Technically speaking, the approximation rates from Matoušek (1996) only hold for d ≥ 4, but
hold up to logarithmic factors for any d ≥ 1.
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4.4 Nonparametric Function Estimation with

Shallow Neural Networks

In this section we consider the usual setup of nonparametric regression in the fixed
design setting, and then extend the results to the random design setting. Consider
the problem of estimating a function f ∈ R BV2(Ω) from the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 ⊂ Ω are fixed, but
scattered, design points. There is a large body of work regarding the problem of
statistical estimation with ridge functions, under many different names, including
projection pursuit regression (Friedman and Stuetzle, 1981), ridgelet shrinkage (Can-
dès, 2003), and, of course, estimation with neural networks (Barron, 1993, 1994). The
last few years have led to a number of related works that consider the problem of
minimax estimation with neural networks (Klusowski and Barron, 2017; Imaizumi
and Fukumizu, 2019; Suzuki, 2019; Schmidt-Hieber, 2020; Hayakawa and Suzuki,
2020). These works fall into two categories: 1) they consider the problem of esti-
mating a function that is explicitly synthesized from a dictionary of neurons; 2) they
consider the problem of estimating a function from a particular (classical) space of
functions (e.g., Hölder, Sobolev, Besov, etc.). Moreover, the procedures for actually
constructing the estimators in these works usually involve greedy algorithms and do
not correspond to how neural networks are actually trained in practice. The work
of this section is different from these past works in that we consider the problem of
estimating functions from a new, not classical, function space, R BV2(Ω), and study
the performance of estimators that correspond to solutions to problem of training
shallow ReLU networks with weight decay, a common regularization scheme used
when training neural networks in practice.

We specifically focus on R BV2(Ω) since our results rely on the L∞ approximation
rates from Theorem 4.10, which may or may not hold for the higher-order spaces.
Once again, for simplicity we suppose that Ω = Bd1 as defined in (4.6). Similar
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results as those stated in the sequel can be derived for more general bounded domains
Ω ⊂ Rd.

Theorem 4.12. Consider the problem of estimating a function f ∈ R BV2(Bd1) such
that R TV2

Bd1
(f) ≤ C from the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 ⊂ Bd1 are fixed
design points. Then, any solution to the variational problem

fM,ReLU ∈ arg min
f∈R BV2(Bd1)

M∑
m=1

|ym − f(xm)|2 s.t. R TV2
Bd1

(f) ≤ C (4.10)

has a mean-squared error bound of

E

[
1

M

M∑
m=1

|f(xm)− fM,ReLU(xm)|2
]
/d C

2d
2d+3

(
N

σ2

)− d+3
2d+3

, (4.11)

where / hides universal constants and logarithmic factors, where the only random
variables in the expectation above are the noise terms {εm}Mm=1.

Remark 4.13. As d→∞, we have that C
2d

2d+3 → C and so the bound (asymptotically)
scales linearly with the constant C.

The proof of Theorem 4.12 follows standard techniques from nonparametric statis-
tics (see, e.g., van de Geer (2000, Chapter 9) or Wainwright (2019, Chapter 13)).
In particular, we use the following general result from Theorem 13.5 and the re-
marks following, the discussion on pg. 424, and Corollary 13.7 in Wainwright (2019,
Chapter 13). We summarize this general result in the following proposition.

Proposition 4.14 (see Wainwright (2019, Chapter 13)). Let F be a convex model
class that contains the constant function, i.e., f ≡ 1 ∈ F. Given f ∈ F, consider the
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problem of estimating f from the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 are fixed design
points in the domain of f . Then, assuming a solution exists, any solution to the
nonparametric least-squares problem

fM ∈ arg min
f∈F

M∑
m=1

|ym − f(xm)|2

has a mean-squared error bound of

E‖f − fM ‖2
M . δ2

M ,

where ‖·‖M is the empirical L2-norm defined by

‖f‖2
M :=

1

M

M∑
m=1

|f(xm)|2.

and δM = δ satisfies the inequality

16√
M

∫ δ

δ2

2σ2

√
logN(t, ∂F, ‖·‖M) dt ≤ δ2

4σ
, (4.12)

where N(t, ∂F, ‖·‖M) denotes the t-covering number of the metric space (∂F, ‖·‖M)

and
∂F = F − F = {f1 − f2 : f1, f2 ∈ F}.

We now use Proposition 4.14 to prove Theorem 4.12.

Proof of Theorem 4.12. In Theorem 4.12, our model class is

FC :=
{
f ∈ R BV2(Bd1) : R TV2

Bd1
(f) ≤ C

}
. (4.13)
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Since R TV2
Bd1

(·) is a seminorm on a Banach space, FC is convex. The constant
function is contained in FC since the null space of R TV2

Bd1
(·) is the space of affine

functions.
Notice that

∂FC = FC − FC = 2FC ⊂ F2C ,

so it suffices to upper bound the metric entropy of F2C to find a δM that satisfies
(4.12). By noticing that ‖·‖M ≤ ‖·‖L∞(Bd1), we can use the approximation rate from
Theorem 4.10 to upper bound (up to logarithmic factors) the metric entropy

logN(t,F2C , ‖·‖M) /d

(
C

t

) 2d
d+3

.

Next,

1√
M

∫ δ

δ2

2σ2

√
logN(t, ∂F, ‖·‖M) dt

≤ 1√
M

∫ δ

0

√
logN(t, ∂F, ‖·‖M) dt

/d
1√
M

∫ δ

0

(
C

t

) d
d+3

dt

=
C

d
d+3

√
M

[
t

3
d+3

∣∣∣δ
0

= C
d
d+3

δ
3
d+3

√
M
.

From (4.12), we want to find δM = δ that satisfies

C
d
d+3

δ
3
d+3

√
M

/d
δ2

σ
. (4.14)
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We have (up to logarithmic factors) that

δ2
M �d C

2d
2d+3

(
M

σ2

)− d+3
2d+3

satisfies (4.14).

Remark 4.15. By Corollary 4.6 and the discussion thereafter, one can compute the
estimator fM,ReLU that satisfies the bound in (4.11) by training a sufficiently wide
shallow ReLU network (to a global minimizer) with weight decay or with path-norm
regularization where, by Lagrange calculus, the choice of the regularization parameter
λ depends on C and the data through the data-fitting term.

Remark 4.16. Since when d = 1, R BV2(Bd1) is exactly the space BV2[−1, 1], the
result of Theorem 4.12 recovers the well-known mean-squared error rate of N−4/5 of
locally adaptive linear spline estimators (Mammen and van de Geer, 1997).

The result of Theorem 4.12 can be extended from the fixed design setting to
the random design setting using standard techniques (see, e.g., Wainwright (2019,
Chapter 14)). In particular, assuming the design points {xm}Mm=1 ⊂ Bd1 are i.i.d.
uniform random variables on Bd1, we can use the techniques outlined in Wainwright
(2019, Chapter 14) to derive the same mean-squared error rate (for sufficiently large
N) with respect to ‖·‖L2(Bd1;PX) instead of ‖·‖M , where PX denotes the uniform
probability measure on Bd1. This results in the following corollary to Theorem 4.12.

Corollary 4.17. Consider the problem of estimating a function f ∈ R BV2(Bd1) such
that R TV2

Bd1
(f) ≤ C from the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 ⊂ Bd1 are i.i.d.
uniform random variables on Bd1. Then, for sufficiently large M , any solution to the
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variational problem

fM,ReLU ∈ arg min
f∈R BV2(Bd1)

M∑
m=1

|ym − f(xm)|2 s.t. R TV2
Bd1

(f) ≤ C

has a mean-squared error bound of

E‖f − fM,ReLU‖2
L2(Bd1;PX) /d C

2d
2d+3

(
M

σ2

)− d+3
2d+3

,

where the only random variables in the expectation above are the noise terms {εm}Mm=1.

The following theorem shows that this mean-squared error rate cannot be improved.
In other words, the rate in Theorem 4.12 is (up to logarithmic factors) minimax
optimal.

Theorem 4.18. Consider the problem of estimating a function f ∈ R BV2(Bd1) such
that R TV2

Bd1
(f) ≤ C from the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 ⊂ Bd1 are i.i.d.
uniform random variables on Bd1. Then, we have the following minimax lower bound

inf
fM

sup
f∈R BV2(Bd1)

R TV2

Bd1
(f)≤C

E‖f − fM‖2
L2(Bd1;PX) &d

(
M

σ2

)− d+3
2d+3

,

where the inf is over all functions of the data and the only random variables in the
expectation are the noise terms {εn}Nn=1.

The proof of Theorem 4.18 follows from the general result of Yang and Barron
(see Yang and Barron (1999, Proposition 1) and Wainwright (2019, Chapter 15))
regarding minimax rates over model classes. We summarize this result in the following
proposition.
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Proposition 4.19 (see Yang and Barron (1999, Proposition 1) and Wainwright
(2019, Chapter 15)). Let F be a model class. Given f ∈ F, consider the problem of
estimating f from the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 are i.i.d. from
some probability measure PX supported on Bd1. Then, if functions in F are uniformly
bounded and the metric entropy is of the form

logN(t,F, ‖·‖L2(Bd1;PX)) �
(

1

t

)r
, r > 0,

we have the minimax rate

inf
fM

sup
f∈F

E‖f − fM‖2
L2(Bd1;PX) � t2M ,

where the only random variables in the expectation are the noise terms {εm}Mm=1, and
t2M = t2 satisfies

t2 �
logN(t,F, ‖·‖L2(Bd1;PX))

M
.

We first use the result of Theorem 4.19 to derive the minimax rate for the model
class

GC :=
{
f ∈ V 2(Bd1) : ‖f‖V 2(Bd1) ≤ C

}
, (4.15)

where V 2(Bd1) is the second-order variation space defined in Section 4.2.1. We then
use this minimax rate to prove Theorem 4.18.

Lemma 4.20. Consider the problem of estimating f ∈ GC (defined in (4.15)) from
the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 are i.i.d. uniform
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random variables on Bd1. The minimax rate for this model class is

inf
fM

sup
f∈GC

E‖f − fM‖2
L2(Bd1;PX) �d M

− d+3
2d+3 ,

where the L2(Bd1; PX)-norm is the L2-norm with respect to the uniform probability
measure measure on Bd1 and the only random variables in the expectation are the noise
terms {εm}Mm=1.

Proof. We are interested in applying Theorem 4.19 with PX being the uniform
probability measure on Bd1. Since the Lebesgue measure is just a constant scaling of
the uniform measure (where the constant is the volume of Bd1), it suffices to know
the metric entropy with respect to the L2(Bd1)-norm. The model class in (4.15) was
extensively studied by Siegel and Xu (2021b) and it is known that

logN(t,GC , ‖·‖L2(Bd1)) �d
(

1

t

) 2d
d+3

.

We refer the reader to Siegel and Xu (2021b, Theorem 4 and Equation (68)) for the
upper bound and Siegel and Xu (2021b, Theorem 8) for the lower bound. We also
remark that the model class GC is uniformly bounded since the functions in V 2(Bd1)

can be written as a superposition of L∞(Bd1)-bounded atoms. With the metric entropy
in the above display, we immediately have the minimax rate in the lemma statement
by applying Theorem 4.19.

We now use Theorem 4.20 to derive a minimax lower bound for the model class
in (4.13).

Proof of Theorem 4.18. It suffices to show that GC ⊂ FC , where FC is defined in
(4.13). Given f ∈ V 2(Bd1) (or in R BV2(Bd1), since they equivalent spaces by Theo-
rem 4.7), we can find an integral representation as in (4.8) such that

‖f‖V 2(Bd1) = ‖µ‖M(Sd−1×[−2,2]).
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Next, if we let ν := µ (Sd−1 × [−1, 1]), we can write f as an integral representation
as in Remark 4.3 such that

R TV2
Bd1

(f) ≤ ‖ν‖M(Sd−1×[−1,1]).

The previous two displays imply R TV2
Bd1

(f) ≤ ‖f‖V 2(Bd1). Therefore, GC ⊂ FC .

4.4.1 Breaking the Curse of Dimensionality

When d = 1, Theorems 4.12 and 4.18 recovers (up to logarithmic factors) the well-
known minimax rate of M−4/5 for BV2[−1, 1] model classes (Donoho and Johnstone,
1998). On the other hand, when d→∞, the rate approaches M−1/2, and is therefore
immune to the curse of dimensionality. To understand why this is happening, we
recall from Section 4.2.3 that R BV2(Bd1) can be viewed as a mixed variation space. In
particular, it contains highly isotropically regular functions that belong to the Sobolev
space Hd/2+2+ε(Bd1), ε > 0, as well as anistropic less regular functions such as the ridge
function defined in (4.9), which barely has two derivatives. These observations about
R BV2(Bd1) make it a compelling framework for high-dimensional nonparametric
estimation. Moreover, the connections with shallow ReLU networks could also shed
light on the empirical success of neural networks in practice: neural networks learn
functions in spaces that are immune to the curse of dimensionality.

4.4.2 Neural Networks vs. Linear Methods

In this section we illustrate the idea that the neural network estimator studied in
Section 4.4 is locally adaptive (a term coined by Donoho and Johnstone (1998)) unlike
more classical linear methods (which include kernel methods (Schölkopf and Smola,
2002)). We illustrate this both quantitatively via linear rates for function estimation
as well as qualitatively via numerical experiments. For the problem of function
estimation, recall that a linear method is a method in which the estimator is a linear
function of the data (y1, . . . , yM), i.e., the estimator is computed via a linear map
T : RM → F, where F is some model class and T can depend on the design points
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{xm}Mm=1 in an arbitrary way. Due to the sparsity-promoting nature of the M-norm
used to define R TV2

Bd1
(·), the estimator in Theorem 4.12 is a nonlinear function of the

data. This is analagous to LASSO-type estimators arising from `1-norm regularized
problems, which are nonlinear estimators for discrete-domain problems.

The Univariate Case

We first recall what happens in the univariate case, discussed in Chapter 1. In
the univariate case, we have that the variational problem in (4.10) reduces to the
(regularized) variational problem

min
f∈BV2[−1,1]

M∑
m=1

|ym − f(xm)|2 + λ ‖D2 f‖M, (4.16)

where λ > 0 is the regularization parameter. The solutions are locally adaptive linear
spline estimators (Mammen and van de Geer, 1997). The minimax rate for BV2[−1, 1]

model classes is M−4/5, which is achieved (up to logarithmic factors) by the locally
adaptive linear spline estimator. Moreover, when restricted to linear estimators, the
linear minimax rate is known to be N−3/4 (Donoho and Johnstone, 1998), which is
achieved (up to logarithmic factors) by the cubic smoothing spline estimator (de Boor
and Lynch, 1966). The cubic smoothing spline is a solution to the variational problem

min
f∈H2[−1,1]

N∑
n=1

|yn − f(xn)|2 + λ ‖D2 f‖2
L2 , (4.17)

where we recall that

H2[−1, 1] :=
{
f ∈ D′[−1, 1] : ‖D2 f‖L2 <∞

}
,

is the second-order L2-Sobolev space and D′[−1, 1] denotes the space of distributions
on [−1, 1]. Moreover, we have the strict containment H2[−1, 1] ⊂ BV2[−1, 1]. The
key difference between the problem in (4.16) and the problem in (4.17) is the difference
between the sparsity-promoting M-norm regularization in (4.16) and the L2-norm
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regularization in (4.17). This is analogous to the difference between `1-norm and
`2-norm regularization in discrete-domain problems.

The main takeaway message here is that this difference quantifies a fundamental
gap between neural network estimators and any linear/kernel estimator; the gap
between the rates M−4/5 and M−3/4. The reason for this gap is that functions in
BV2[−1, 1] are spatially inhomogeneous, while functions in H2[−1, 1] are spatially
homogeneous. Neural network estimators are able to adapt to the inhomogeneities of
the data-generating function (and are therefore locally adaptive), while linear methods
cannot. This shows that even the simplest neural networks (shallow, univariate)
outperform linear methods when the data-generating function is spatially inhomoge-
neous. We illustrate this phenomenon in Figure 4.1, where we consider the problem
of fitting data generated from a spatially inhomogenous function in BV2[−1, 1] that
is not in H2[−1, 1] using a shallow ReLU network and a cubic smoothing spline. As
these results are qualitative, we manually adjusted the regularization parameter λ
in the experiments in order to find solutions that visually capture the phenomenon
described above.

In Figure 4.1(a) we plot a function (in blue) and generate a data set by taking
noisy samples (in red) of the function plus i.i.d. Gaussian noise. Clearly this function
is in BV2[−1, 1] but not in H2[−1, 1] since taking two (distributional) derivatives of
this function is an impulse train. This function is spatially inhomogeneous since it is
highly oscillatory in some regions and less oscillatory in others.

In Figure 4.1(b) and Figure 4.1(c), we plot the cubic smoothing spline fit to the
data for large and small λ, respectively. This illustrates that the cubic smoothing
spline (which is a kernel method) cannot adapt to the spatial inhomogenity of the
underlying function. Even by adjusting the regularization parameter λ, the solution
cannot adapt to the spatial inhomogeneity of the underlying function. Indeed, we see
for large λ in Figure 4.1(b) that the cubic smoothing spline oversmooths the high
variation portion of the data and we see for small λ in Figure 4.1(c) that the cubic
smoothing spline undersmooths (overfits) the low variation portion of the data.

In Figure 4.1(d) we plot a solution to the variational problem in (4.16), which is
a locally adaptive linear spline which can be computed by training a shallow ReLU
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(a) True function and data.

(b) Cubic smoothing spline with large λ.

(c) Cubic smoothing spline with small λ.

(d) Shallow ReLU network or locally adaptive linear spline.

Figure 4.1: In (a) we generate data from noisy samples of a function in BV2[−1, 1]
but not in H2[−1, 1]. In (b) and (c) we fit the data using a cubic smoothing spline
with both large and small λ. In (d) we fit the data using a locally adaptive linear
spline which corresponds to training a shallow ReLU network (to a global minimizer)
with weight decay (or path-norm regularization).

network (to a global minimizer) with weight decay or path-norm regularization. In
this case, we see that the locally adaptive linear spline is able to adapt to the spatial
inhomogeneities of the underlying function.

We also recall that wavelet shrinkage estimators, in which the mother wavelet
is sufficiently regular, are also a minimax optimal estimators for nonparametric
estimation of BV2[−1, 1] functions as we saw in Chapter 1, Figure 1.4. This shows
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that in the simplest setting, shallow ReLU networks trained with weight decay (to a
global minimizer) perform exactly the same as classical techniques such as locally
adaptive spline estimators and wavelet shrinkage estimators.

The Multivariate Case

In the multivariate case, we see a similar gap from the univariate case. In particular,
we derive the following linear minimax lower bound for the estimation problem over
R BV2(Bd1).

Theorem 4.21. Consider the problem of estimating a function f ∈ R BV2(Bd1)

satisfying R TV2
Bd1

(f) ≤ C from the noisy samples

ym = f(xm) + εm, m = 1, . . . ,M,

where {εm}Mm=1 are i.i.d. N(0, σ2) random variables and {xm}Mm=1 ⊂ Bd1 are i.i.d.
uniform random variables on Bd1. Then, for sufficiently large M , we have the following
linear minimax lower bound

inf
fM linear

sup
f∈R BV2(Bd1)

R TV2

Bd1
(f)≤C

E‖f − fM‖2
L2(Bd1;PX) &d

(
N

σ2

)− 3
d+3

,

where the inf is over all linear functions of the data and the only random variables in
the expectation are the noise terms {εn}Nn=1

To prove Theorem 4.21, we require several results from ridgelet analysis. It was
shown in Candès (1998, Theorem 7) that we have the continuous embedding

R
(d+3)/2
1,1 (Bd1)

c.
↪→ V 2(Bd1),

where we recall that V 2(Bd1) is the variation space for shallow ReLU networks, and
Rs
p,q(Bd1) denotes the ridgelet space of Candès (1998). Ridgelet spaces were proposed
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as a generalization of Besov spaces, and in the univariate case, the ridgelet space
Rs
p,q(Bd1) coincides with the Besov space Bs

p,q[−1, 1].
Next, recall that we showed in the proof of Theorem 4.18 that GC ⊂ FC , where GC

and FC are the model classes defined in (4.13) and (4.15), respectively. Combining
this fact with the above display, we see that to prove Theorem 4.21, it suffices to
show the linear minimax lower bound for the model class

HC :=
{
f ∈ R(d+3)/2

1,1 (Bd1) : ‖f‖
R

(d+3)/2
1,1 (Bd1)

≤ C
}
.

We make use of the following generic result.

Proposition 4.22 (see Candès (2003, Proof of Theorem 4.1)). Let F ⊂ L2(Bd1) be a
convex model class and consider the problem of estimating f ∈ F from the continuous
white noise model

dYε(x) = f(x) dx+ ε dW (x), x ∈ Bd1,

where ε is the noise level and dW (x) is a standard d-dimensional Wiener process.
Furthermore, suppose that for any δ > 0, there exists .d Kδ orthogonal elements
{gk}Kk=1 ⊂ F such that ‖gk‖L2(Bd1) = δ, k = 1, . . . , K. Then, the linear minimax rate
is lower-bounded by

inf
fε linear

sup
f∈F

E‖f − fε‖2
L2(Bd1) &d δ

2
ε ,

where δε = δ solves
δ2 = ε2Kδ.

Proposition 4.23 (see Candès (1998, Theorem 11) and Candès (2003, Lemmas A.1,
A.2, and A.3)). For any integer j ≥ 2, There exists a set {gk}Kk=1 of orthogonal
elements with K &d 2jd contained in{

f ∈ Rs
1,1(Bd1) : ‖f‖Rs1,1(Bd1) ≤ C

}
,
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where C > 0 is a constant, such that

‖gk‖L2(Bd1) = 2j(s−d/2), k = 1, . . . , K.

If we choose δ = 2j(s−d/2), we see that K &d δ
−2d/(2s−d) and so the linear minimax

lower bound is δ2
ε , where δε = δ solves

δ2 = ε2δ−2d/(2s−d),

i.e,
δ2
ε = (ε2)(2s−d)/2s.

With these results, we now prove Theorem 4.21.

Proof of Theorem 4.21. The linear minimax lower bound for the model class HC

corresponds to the case when s = (d+ 3)/2 and so the linear minimax lower bound
for this model class (in the continuous white noise setting) will be

(ε2)3/(d+3)

By a standard sampling argument4, we have that the continuous white noise model
is asymptotically equivalent to the estimation problem with discrete samples drawn
uniformly on Bd1, where ε = σ/

√
M , for sufficiently large M , so we get the linear

minimax lower bound of (
M

σ2

)− 3
d+3

.

Just as in the univariate case, the takeaway message here is that this lower bound
quantifies a fundamental gap between neural network estimators and any linear/kernel
estimator. The minimax rates for nonlinear and linear estimation are M− d+3

2d+3 and
4See Brown and Low (1996) where this argument was first rigorously formalized in the univariate

case, and see Reiß (2008) where this idea was rigorously formalized in the multivariate case, which
applies to our setting.
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M− 3
d+3 , respectively. As d→∞, the nonlinear estimation rate tends to M−1/2, which

is immune to the curse of dimensionality, while the linear estimation error rate suffers
the curse of dimensionality. Moreover, these rates recover the univariate (d = 1)
rates of M−4/5 and M−3/4. The reason for the gap between the nonlinear and linear
minimax rates is that functions in R BV2(Bd1) are spatially inhomogeneous since it
is a mixed variation space and neural network estimators are able to adapt to the
inhomogeneities of the data-generating function (and are therefore locally adaptive),
while linear methods cannot.

(a) True function and
data.

(b) Thin-plate spline. (c) Shallow ReLU
network.

Figure 4.2: In (a) we generate noisy samples of a function in both R BV2(B2
1) and

H2(B2
1). In (b) we fit the data using a thin-plate spline. In (c) we fit the data with a

shallow ReLU network trained with weight decay.

We illustrate this phenomenon by considering the problem of estimating a two-
dimensional function and compare solutions to the variational problem in (4.10) with
the thin-plate spline estimator (Wahba, 1990), which is a linear method and a special
case of a kernel method. The thin-plate spline is a solution to the variational problem

min
f∈H2(B2

1)

M∑
m=1

|ym − f(xm)|2 + λ
(∥∥∂2

x1
f
∥∥2

L2 + 2‖∂x2∂x1f‖
2
L2 +

∥∥∂2
x2
f
∥∥2

L2

)
,

where H2(B2
1) is the second-order L2-Sobolev space, which is defined as the space

of all functions where the regularizer in the above display is finite. Notice that the
problem in the above is a generalization of the cubic smoothing spline problem in
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(a) True function and
data.

(b) Thin-plate spline. (c) Shallow ReLU
network.

Figure 4.3: In (a) we generate noisy samples of a function in R BV2(B2
1) but not in

H2(B2
1). In (b) we fit the data using a thin-plate spline. In (c) we fit the data with a

shallow ReLU network trained with weight decay.

(4.17). We compare the shallow ReLU network estimator to the thin-plate spline
estimator for two functions, one that is in both R BV2(B2

1) and H2(B2
1), and one that

is only in R BV2(B2
1). In all the experiments, we manually adjusted the regularization

parameter λ to obtain the best results for each method. Thus, the results (visually)
compare the best performance of each method.

In Figure 4.2 we consider a function that is a superposition of three Gaussians.
This function is infinitely differentiable and therefore in both R BV2(Bd1) and H2(B2

1).
In Figure 4.2(a), we plot the function with a heatmap where lighter colors correspond
to larger values and darker colors correspond to smaller values. We then generate a
data set by taking noisy samples (in red) of the function plus i.i.d. Gaussian noise.
In Figure 4.2(b), we plot the heatmap of the thin-plate spline fit to the data. We see
that the thin-plate spline estimates the original function quite well. In Figure 4.2(c),
we plot the heatmap of the shallow ReLU network. We also see that the shallow
ReLU network estimates the original function quite well.

In Figure 4.3 we consider a function that is a ridge function in a random direction
where the profile is a continuous piecewise-linear function, a triangular waveform.
This function does not have two weak derivatives and is therefore not in H2(B2

1),
but is in R BV2(Bd1). In Figure 4.3(a), we plot the heatmap of the function. We
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then generate a data set by taking noisy samples (in red) of the function plus i.i.d.
Gaussian noise. In Figure 4.3(b), we plot the heatmap of the thin-plate spline fit to
the data. We see that the thin-plate spline struggles to estimate the original function.
In Figure 4.3(c), we plot the heatmap of the shallow ReLU network. We see that the
shallow ReLU network estimates the original function quite well.

The main takeaway message here is that the shallow ReLU network is able to
locally adapt to the mixed variation of the data-generating function, whether it be a
highly isotropically regular function or a anistropically less regular function, while
linear/kernel methods cannot. We believe that the results of this section provide
compelling evidence that trying to understand neural networks via linearization
schemes such as the neural tangent kernel (Jacot et al., 2018) do not properly
capture what neural networks are actually doing in practice. The key idea being that
neural networks are able to locally adapt to the mixed variation of the underlying
data-generating function.
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Chapter 5

Concluding Remarks

Inspired by tools from spline theory we proposed and studied a new family of Banach
spaces, referred to as Radon-domain bounded variation spaces. These spaces are
intrinsically related to neural networks with various activation functions including the
popular ReLU. Additionally, the results of this dissertation also provide compelling
evidence that neural networks can (and should!) be viewed as a type of spline.

In particular, we derived representer theorems over these spaces, showing that
the solution sets to data-fitting variational problems over these spaces are completely
characterized by functions that are realizable by neural networks. Moreover, these
variational problems can be recast as finite-dimensional neural network training
problems with regularization schemes related to weight decay and path-norm regular-
ization, providing new theoretical explanation for these regularization schemes as well
as providing several new, principled regularization schemes for deep neural networks.

We also showed that on a bounded domain, these spaces are equivalent (as Banach
spaces) to the variation spaces of neural networks. This allowed us to study the
approximation properties of these Banach spaces, showing that these spaces are
immune to the curse of dimensionality. Using these approximation properties, we
were able to show that neural network estimators are near-minimax optimal estimators
for functions from these spaces.
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5.1 How Theory Informs Practice

The variational framework developed in this dissertation informs the practical use of
neural networks.

• By showing that the solutions to neural network training problems are solutions
to variational problems over the Radon-domain BV space R BVk, we now have a
concrete framework for comparing neural networks to more classical data-fitting
techniques such as kernel methods (which are optimal solutions to variational
problems over an RKHS) by comparing R BVk to the RKHS of the particular
kernel method.

• Many theoretical results regarding neural networks hold for infinite-width neural
networks (Jacot et al., 2018; Wei et al., 2019). The representer theorems in
Chapter 3 show that it suffices to only consider (deep) neural networks of
finite-width so long as the width is sufficiently wide.

• Skip connections are a common architectural choice in neural networks (He
et al., 2016). Many of the reasons for considering skip connections are based
on heuristics. Skip connections are a natural by-product of the variational
framework developed in this dissertation, providing a principled reason for
considering skip connections in neural network architectures.

• It has become folklore in the machine learning community that deep neural
networks are simply linear/kernel methods (Monroe, 2022). The results of this
dissertation show that neural networks learn functions in the (non-Hilbertian)
R BVk Banach spaces.

5.2 Open Problems

There are a number of open problems that remain regarding these new function
spaces. In the remainder of this chapter we outline several directions for future work.
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5.2.1 Approximate Atomic Decomposition of R BVk(Ω)

In the univariate case, the Radon-domain BV space R BVk, reduces to the classical
BVk space. On a bounded domain, it is well-known (see, e.g., Peetre, 1976) that we
have the continuous embeddings

Bk
1,1[0, 1]

c.
↪→ BVk[0, 1]

c.
↪→ Bk

1,∞[0, 1]. (5.1)

Since Besov spaces admit atomic decompositions via wavelets (Triebel, 2008), this
result implies that the BVk[0, 1] spaces approximately admit atomic decompositions
since they are tightly sandwiched between two very similar Besov spaces which
do admit atomic decompositions, even though the BVk[0, 1] spaces do not have
unconditional bases. It remains an open question whether or not when d ≥ 1 the
R BVk(Ω) spaces admit an approximate atomic decomposition, where Ω ⊂ Rd is a
bounded domain.

Using classical function spaces, we cannot tightly sandwich R BVk(Ω) between
two similar spaces. Indeed, using L2-Sobolev spaces, we have from Section 4.2.2 the
following sandwiching of R BVk(Ω)

Hd/2+k+ε(Ω)
c.
↪→ R BVk(Ω)

c.
↪→ Hk−1(Ω),

where ε > 0. The gap between the two Sobolev spaces implies that classical function
spaces are, perhaps, too coarse to tightly sandwich the new, not classical R BVk(Ω)

spaces. To this end, in the remainder of this chapter, we propose a new scale of
Banach spaces, which we refer to as Radon-domain Besov spaces, and conjecture
how the R BVk(Ω) spaces are related to these new spaces as well as outline some
technical difficulties in actually trying to prove the conjecture.
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Radon-Domain Besov Spaces

From the L2-isometries of the Radon transform (see Section 2.5), consider the following
4 parameter (r, s ≥ 0, 1 ≤ p <∞, 1 ≤ q ≤ ∞) family of function spaces

RBr,s
p,q(Rd) := R∗K

d−1
2

(
Br
p,q(Sd−1)⊗α Bs

p,q(R)
)
, (5.2)

where Br
p,q(Sd−1) and Bs

p,q(R) are the usual Besov spaces on Sd−1 and R, respectively,
and ⊗α denotes the completion of the algebraic tensor product with respect to an
appropriate tensor norm α which we define explicitly in (5.3). We refer to RBr,s

p,q(Rd)

as a Radon-domain Besov space since it is the tensor product of Besov spaces in the
(half-filtered) Radon domain. Note that since R∗K

d−1
2 is an L2-isometry combined

with the intertwining of Laplacians and the Radon transform, we have that

RB0,s
2,2(Rd) = Hs(Rd),

where Hs(Rd) is the usual sth-order L2-Sobolev space on Rd.
This definition captures a kind of anisotropy between the direction and offset

variables of the Radon domain. In order to define the tensor norm α, we use the fact
that Besov spaces admit atomic decompositions via sequence space representations.

From Narcowich et al. (2006b,a), there exist localized (i.e., wavelet-like) frames
on the sphere Sd−1. These frames are referred to as needlets due to their almost
exponential localization and that they look like needles on the sphere. Let {ϕη}η∈X,
denote the needlet system. The index set X ⊂ Sd−1 is a countable collection of the
centers of each needlet function ϕη. We can decompose the index set as X =

⋃∞
j=0 Xj ,

where the Xj indexes all needlets at scale j. This system forms a Parseval frame
for L2(Sd−1) (i.e., a frame with frame bounds equal to 1) (Narcowich et al., 2006b,
Theorem 5.2). Also, let {ψj,k}j∈N0,k∈Z denote the inhomogeneous Meyer wavelet
system (Lemarié and Meyer, 1986), where

ψ0,k(x) := φ(x− k), k ∈ Z,
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where φ is the Meyer scaling function and

ψj+1,k(x) := 2j/2ψ(2jx− k), j ∈ N0, k ∈ Z,

where ψ is the Meyer wavelet function. The system {ψj,k}j∈N0,k∈Z forms an orthobasis
for L2(R).

Next, it is well-known that (see, e.g., Narcowich et al., 2006a, Theorem 5.5) that
given f ∈ S′(Sd−1)1, f ∈ Br

p,q(Sd−1) if and only if

‖f‖Brp,q =

 ∞∑
m=0

2m(r+(d−1)/2−(d−1)/p)

(∑
η∈Xm

|〈g, ϕη〉|p
)1/p

q1/q

<∞,

where {ϕη}η∈Xm are the needlets at scale m, with appropriate modification when
q =∞. It is also well-known that (see, e.g., Meyer, 1992, Chapter 6) given f ∈ S′(R),
f ∈ Bs

p,q(R) if and only if

‖f‖Bsp,q =

 ∞∑
j=0

2j(s+1/2−1/p)

(∑
k∈Z

|〈f, ψj,k〉|p
)1/p

q1/q

<∞,

with appropriate modification when q =∞. Note that the pairings 〈·, ·〉 that appear
in the above two displays are well-defined since ϕη ∈ S(Sd−1) and ψj,k ∈ S(R). From
these two atomic decompositions, we define norm on Br

p,q(Sd−1)⊗α Bs
p,q(R) as

‖g‖Brp,q(Sd−1)⊗Bsp,q(R)

=

 ∞∑
m=0

∞∑
j=0

2m(r+(d−1)/2−(d−1)/p)+j(s+1/2−1/p)

(∑
η∈Xm

∑
k∈Z

∣∣∣[g, ϕη ⊗ ψj,k]∣∣∣p)1/p
q1/q

.

(5.3)
This is the tensor norm used to complete the tensor product in (5.2). One can check

1S′(Sd−1) is the space of distributions on the sphere, which is the continuous dual of the space
of test functions on the sphere S(Sd−1) := C∞(Sd−1).
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that the system {ρj,k,η}j∈N0,k∈Z,η∈X defined by

ρj,k,η(x) =

∫
Sd−1

ψ̃j,k(α
Tx)ϕη(α) dσ(α),

is a Parseval frame for L2(Rd), where ψ̃j,k = K
d−1

2 ψj,k, i.e.,

K
d−1

2 ψj,k̂(ω) = K̂
d−1

2 (ω)ψ̂j,k(ω) =
√
cd|ω|

d−1
2 ψ̂j,k(ω).

This system has the property that given f ∈ S′(Rd),

〈f, ρj,k,η〉 =
[
K

d−1
2 Rf, ϕη ⊗ ψj,k

]
,

and so we can equip the space RBr,s
p,q(Rd) with the norm

‖f‖RBr,sp,q :=

 ∞∑
m=0

∞∑
j=0

2m(s1+(d−1)/2−(d−1)/p)+j(s2+1/2−1/p)

(∑
η∈Xm

∑
k∈Z

|〈f, ρj,k,η〉|p
)1/p

q1/q

making it a Banach space, with appropriate modification when q =∞.

Remark 5.1. The frame elements ρj,k,η can be viewed as a weighted average of the
(half-filtered) wavelet ridge functions

ψ̃j,k(α
Tx),

averaged over all directions α ∈ Sd−1, where the weighting function is the needlet ϕη,
centered at the direction η ∈ X ⊂ Sd−1. Therefore, these frame elements are localized
functions, parameterized by a location j, scale k, and direction η. We consider this a
localized ridgelet-type tight frame.

Let Ω ⊂ Rd be a bounded domain with a sufficiently nice boundary. We can
define the space RBr,s

p,q(Ω) as

RBr,s
p,q(Ω) :=

{
f : D′(Ω) : ∃g ∈ RBr,s

p,q(Rd) s.t. g|Ω = f
}
,



121

This is a Banach space when equipped with the norm

‖f‖RBr,sp,q(Ω) := inf
g∈RBr,sp,q(Rd)

‖g‖RBr,sp,q(Rd) s.t. g|Ω = f.

Moreover, these spaces admit atomic decompostions since the Besov spaces used to
define RBr,s

p,q(Rd) admit atomic decompositions. From the univariate embeddings in
(5.1), we conjecture the following embeddings for the R BVk(Ω) spaces.

Conjecture 5.2. Let Ω ⊂ Rd be a bounded domain. We conjecture that we have the
following continuous embeddings

RB
0,k+ d−1

2
1,1 (Ω)

c.
↪→ R BVk(Rd)

c.
↪→ RB

0,k+ d−1
2

1,∞ (Ω)

when Ω has a sufficiently nice boundary.

The main technical difficulties in proving this conjecture arise in the construction
of a nice extension operator from RBr,s

p,q(Ω) → RBr,s
p,q(Rd). This problem is very

similar to finding an intrinsic definition2 of R BVk on a bounded domain. In the
case of Besov spaces, such extension operators exist due to their intrinsic definition
via moduli of continuity3 over the more standard Littlewood–Paley characterization
studied in harmonic analysis (DeVore and Sharpley, 1993).

5.2.2 Generalized Radon Transforms and New Representer

Theorems

In the representer theorems in Theorems 3.2 and 4.5 and Corollary 3.13, the resulting
atoms have normalized singularities along hyperplanes in the sense of Donoho (1993,
Definition 5). The singularities are along hyperplanes due to the Radon transform,
since the Radon transform of a function is computed via its integral along hyperplanes.

A natural followup question is about defining function spaces via integral trans-
forms along other low-dimensional manifolds, resulting in representer theorems with

2Our current definition hinges on the Radon transform, which is a global operator.
3The modulus of continuity is a local quantity.
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atoms that have different kinds of normalized singularities. We believe that this
should be possible through the framework of generalized Radon transforms (Quinto,
1980). In particular, we saw in (2.5) that the standard Radon transform R satisfies

(R∗R)−1 = cd(−∆)
d−1

2 .

We believe this problem can be solved by considering generalized Radon transforms
G such that (G ∗G )−1 is a pseudodifferential operator, in which case there are some
generic results about the inversion of the transform and its dual (Quinto, 1980).
The main technical difficulty that arises in proving such a result revolves around
developing a distributional theory of these transforms.

5.2.3 Alternative Banach Spaces for Vector-Valued Functions

In Remark 3.9, we saw that the space R BVk(Rd) is isometrically isomorphic to
Mk(Sd−1 × R)× Pk−1(Rd). When defined the vector-valued versions of these spaces
(in the case that k = 2), our definition of R BV2(Rd;RD) from (3.20) and (3.21) is
isometrically isomorphic to the space `1([D];Meven(Sd−1 × R))× P1(Rd;RD), where
P1(Rd;RD) denotes the D-fold Cartesian product of P1(Rd). The main limitation of
this construction is that the resulting shallow neural networks in the vector-valued
representer theorem in Lemma 3.25 essentially correspond to D separate, decoupled
scalar-output neural networks, as opposed to a vector-valued neural network with
shared neurons.

Suppose k = 2, a natural question to ask is the existence of an analytic charac-
terization of a Banach space isometrically isomorphic to Meven(Sd−1 × R; `p([D]))×
P1(Rd;RD), for some 1 < p < ∞. The space Meven(Sd−1 × R; `p([D])) is likely
to promote coupling between the vector-valued outputs as opposed to the space
`1([D];Meven(Sd−1 × R)).
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