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Function-Space Optimality of Neural Architectures with Multivariate
Nonlinearities\ast 
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Abstract. We investigate the function-space optimality (specifically, the Banach-space optimality) of a large
class of shallow neural architectures with multivariate nonlinearities/activation functions. To that
end, we construct a new family of Banach spaces defined via a regularization operator, the k-plane
transform, and a sparsity-promoting norm. We prove a representer theorem that states that the so-
lution sets to learning problems posed over these Banach spaces are completely characterized by neu-
ral architectures with multivariate nonlinearities. These optimal architectures have skip connections
and are tightly connected to orthogonal weight normalization and multi-index models, both of which
have received recent interest in the neural network community. Our framework is compatible with
a number of classical nonlinearities including the rectified linear unit activation function, the norm
activation function, and the radial basis functions found in the theory of thin-plate/polyharmonic
splines. We also show that the underlying spaces are special instances of reproducing kernel Banach
spaces and variation spaces. Our results shed light on the regularity of functions learned by neural
networks trained on data, particularly with multivariate nonlinearities, and provide new theoretical
motivation for several architectural choices found in practice.
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theorem
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1. Introduction. In supervised machine learning, the goal is to predict an output y \in 
\scrY (e.g., a label or response) from an input \bfitx \in \scrX (e.g., a feature or example), where \scrX 
and \scrY denote the domain of the inputs and outputs, respectively. One solves this task by
``training"" a model to fit a set of data which consists of a finite number of input-output pairs
\{ (\bfitx m, ym)\} Mm=1 \subset \scrX \times \scrY . The goal is to ``learn"" a function f : \scrX \rightarrow \scrY with f(\bfitx m) \approx ym,
m = 1, . . . ,M , such that f can accurately predict the output y \in \scrY of a new input \bfitx \in \scrX .
This task is usually formulated as an optimization problem of the form

min
f\in \scrF 

M\sum 
m=1

\scrL (ym, f(\bfitx m)) + \lambda \Phi (f),(1.1)

\ast Received by the editors December 1, 2023; accepted for publication (in revised form) October 14, 2024; published
electronically January 9, 2025.

https://doi.org/10.1137/23M1620971
Funding: This work was supported in part by the Swiss National Science Foundation under grant 200020

219356 / 1.
\dagger Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093

USA, and part of this work was done while the author was with the Biomedical Imaging Group, \'Ecole polytechnique
f\'ed\'erale de Lausanne, CH-1015 Lausanne, Switzerland (rahul@ucsd.edu).

\ddagger Biomedical Imaging Group, \'Ecole polytechnique f\'ed\'erale de Lausanne, CH-1015 Lausanne, Switzerland
(michael.unser@epfl.ch).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

110

D
ow

nl
oa

de
d 

01
/1

1/
25

 to
 1

37
.1

10
.3

4.
20

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/23M1620971
mailto:rahul@ucsd.edu
mailto:michael.unser@epfl.ch


FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 111

where \scrF is a prescribed model class of functions that map \scrX \rightarrow \scrY , \scrL (\cdot , \cdot ) is a loss function,
and \Phi :\scrF \rightarrow \BbbR \geq 0 is a regularization functional that injects prior knowledge/regularity on the
function to be learned. The hyperparameter \lambda > 0 controls the tradeoff between data fidelity
and regularity. Without the inclusion of the regularization functional in (1.1), the problem
is typically ill-posed. Indeed, in many practical scenarios the problem is overparameterized
as the dimension of the model class \scrF greatly exceeds the number M of data. A classical
choice of model class is a reproducing kernel Hilbert space (RKHS). The accompanying reg-
ularization functional is the squared Hilbert norm of the RKHS. In this scenario, the RKHS
representer theorem establishes that there exists a solution to (1.1) that takes the form of a
linear combination of reproducing kernels centered at the data sites [10, 29, 55, 70, 71]. This
provides an exact characterization of the function-space optimality of kernel methods.

Recently, there has been a line of work that investigates the function-space optimality
of neural networks [4, 5, 41, 42, 43, 44, 46, 54, 62, 66]. Crucially, these works define and
study (non-Hilbertian) Banach spaces defined by sparsity or variation. These spaces have an
analytic description via the Radon transform [30, 41, 43]. The accompanying neural network
representer theorems for these spaces were first established in [43] and then studied and refined
by a number of authors [5, 44, 62, 66]. While these results characterize the function-space
optimality of neural networks, they only consider univariate nonlinearities. We refer the reader
to the recent survey [45] for an up-to-date summary of this research direction. The purpose of
this paper is to further extend the existing results on the function-space optimality of neural
architectures, with a particular focus on multivariate nonlinearities, which have gained recent
interest in the neural network community [2, 21, 23, 38].

The form of a neuron with an m-variate nonlinearity, 1\leq m\leq d, is

\bfitx \mapsto \rightarrow \rho (\bfA \bfitx  - \bfitt ), \bfitx \in \BbbR d,(1.2)

where \rho : \BbbR m \rightarrow \BbbR is the nonlinearity (or activation function), \bfA \in \BbbR m\times d is a weight matrix
that controls the orientation of the neuron, and \bfitt \in \BbbR m is a bias which controls the offset of
neuron. When m= 1, these atoms can be written as

\bfitx \mapsto \rightarrow \rho (\bfitalpha T\bfitx  - t), \bfitx \in \BbbR d,(1.3)

with \rho : \BbbR \rightarrow \BbbR , \bfitalpha \in \BbbR d, and t \in \BbbR , which is the form of a classical neuron with a univariate
nonlinearity. Neurons with m-variate nonlinearities as in (1.2) have been studied under many
different names, including m-sparse functions [1, 18], generalized ridge functions [28], (d - m)-
plane ridge functions [47], and multi-index models [8, 9, 15, 32, 35]. Notably, multi-index
models have gained recent interest from the neural network community [1, 4, 18, 48]. A
shallow neural architecture with an m-variate nonlinearity \rho :\BbbR m \rightarrow \BbbR takes the form

\bfitx \mapsto \rightarrow 
N\sum 

n=1

vn \rho (\bfA n\bfitx  - \bfitt n), \bfitx \in \BbbR d,(1.4)

where, for n= 1, . . . ,N , vn \in \BbbR , \bfA n \in \BbbR m\times d, and \bfitt n \in \BbbR m. Such architectures are sometimes
called generalized translation networks [38, 39, 40] and are classically known to be universal
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112 RAHUL PARHI AND MICHAEL UNSER

approximators if and only if1 \rho : \BbbR m \rightarrow \BbbR is not a polynomial [39, Corollary 3.3]. These
architectures have also recently been studied in the context of ridgelet analysis for a variety
of shallow neural architectures [61]. In this paper, we characterize, for all integers m with 1\leq 
m \leq d, the function-space optimality of neural architectures with m-variate nonlinearities of
the form (1.4), for a large class of nonlinearities. We show that these architectures are optimal
solutions to data-fitting problems posed over (non-Hilbertian) Banach spaces defined via a
sparsity-promoting norm in the domain of the k-plane transform. Whenm= 1, our framework
is compatible with univariate nonlinearities and classical neural architectures, including the
ReLU activation function. At the opposite extreme (m = d) our framework encompasses
sparse kernel expansions and radial basis functions [3, 50, 63]. To the best of our knowledge,
the results for 1<m<d are new.

1.1. Main contributions and road map. Our results shed light on the regularity of the
functions learned by neural networks trained on data. They provide new theoretical moti-
vation for several architectural choices often found in practice, particularly with multivariate
nonlinearities. These results hinge on recent developments regarding the distributional exten-
sion and invertibility of the k-plane transform and its dual [47]. The main contributions and
organization of this paper are summarized in the remainder of this section.

New neural network Banach spaces. We propose and study the properties of a new family
of native spaces, defined by2

\scrM k
\mathrm{L}(\BbbR d) :=

\left\{   f :\BbbR d \rightarrow \BbbR is measurable :
\| Kd - k Rk Lf\| \scrM <\infty ,

ess sup
\bfitx \in \BbbR d

| f(\bfitx )| (1 + \| \bfitx \| 2) - n\mathrm{L} <\infty 

\right\}   \subset \scrS \prime (\BbbR d),(1.5)

where k is an integer such that 0\leq k < d, \scrS \prime (\BbbR d) denotes the space of tempered distributions, L
is a k-plane-admissible pseudodifferential operator (in the sense of Definition 3.1), Rk denotes
the k-plane transform, and Kd - k is the filtering operator of computed tomography (CT) which
is such that R\ast 

kKd - k Rk = Id. The \scrM -norm denotes the total variation norm (in the sense
of measures). It can be viewed as a ``generalization"" of the L1-norm that can also be applied
to distributions such as the Dirac impulse. Said differently, if f \in \scrM k

\mathrm{L}(\BbbR d) is such that
Kd - k Rk Lf is a bona fide function (not a distribution), then

\| Kd - k Rk Lf\| \scrM = \| Kd - k Rk Lf\| L1 .(1.6)

The growth restriction of degree n\mathrm{L} plays the role of a proxy to the order of L; more specifically,
n\mathrm{L} is the highest polynomial degree annihilated by L. The growth restriction in the definition
of the native space ensures that the null space of the operator Kd - k Rk L is finite-dimensional.
In subsection 3.1, we prove that, when equipped with an appropriate direct-sum topology,
\scrM k

\mathrm{L}(\BbbR d) forms a Banach space that is isometrically isomorphic to the Cartesian product of a
space of (Radon) measures with the space of polynomials of degree at most n\mathrm{L}. They add to
the growing list of ``neural Banach spaces"" that are currently being actively investigated [57].

1This equivalence holds under the global assumption that \rho :\BbbR m \rightarrow \BbbR does not grow faster than a polynomial,
i.e., it is a tempered function.

2We refer to a function as measurable when it is measurable with respect to the Lebesgue \sigma -algebra.
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 113

Representer theorems for neural networks with multivariate nonlinearities. We prove a repre-
senter theorem (Theorem 3.8) that states that, under mild assumptions on the loss function
and L, the solution set to the optimization problem

min
f\in \scrM k

\mathrm{L}(\BbbR d)

M\sum 
m=1

\scrL (ym, f(\bfitx m)) + \lambda \| Kd - k Rk Lf\| \scrM (1.7)

is completely characterized by shallow neural architectures with (d  - k)-variate activation
functions matched to the operator L and widths bounded by the number M of data (inde-
pendent of the dimension d of the data). This result sheds light on the role of biases, skip
connections, and the use of structured weight matrices in neural architectures. Indeed, these
architectures take the form

\bfitx \mapsto \rightarrow c(\bfitx ) +

N\sum 
n=1

vn \rho \mathrm{L}(\bfA n\bfitx  - \bfitt n)(1.8)

with N \leq M , where, for n = 1, . . . ,N , \bfA n \in \BbbR (d - k)\times d is such that \bfA n\bfA 
T
n = \bfI d - k (identity

matrix), \bfitt n \in \BbbR d - k, and vn \in \BbbR \setminus \{ 0\} . The function c is a polynomial of degree at most n\mathrm{L} and
the function \rho \mathrm{L} :\BbbR d - k \rightarrow \BbbR is a (d - k)-variate nonlinearity matched to the operator L. Finally,
the regularization cost of (1.8) is

\sum N
n=1| vn| = \| \bfitv \| 1. The term \bfitx \mapsto \rightarrow c(\bfitx ) that appears in (1.8)

can be viewed as a (generalized) skip connection in neural network parlance. Note that (1.8)
is exactly a sparse combination of multi-index models with learnable orientations \bfA n, offsets
\bfitt n, and fixed profiles specified by the multivariate nonlinearity \rho \mathrm{L} as well as a generalized
translation network as in (1.4). Thus, if the data lie on a low-dimensional subspace (or union
of subspaces), the neural architecture could automatically adapt to this structure and avoid
the curse of dimensionality.

Connections to prior work. In section 4, we instantiate our results on the function-space
optimality of neural architectures. First, we discuss implications of our representer theorem
to the training and regularization of neural networks. These results provide new insight into
the role of overparameterization and the use of orthogonal weight normalization in network
architectures, which corresponds to the property that \bfA n\bfA 

T
n = \bfI d - k in (1.8) [2, 24, 25, 33].

This property has been shown to increase the stability [2] and generalization properties [25] of
neural architectures. We then discuss specific examples of neural architectures that are com-
patible with our framework. These architectures include the popular ReLU [19], the norm
activation function/nonlinearity [23], and the radial basis functions found in the theory of
thin-plate/polyharmonic splines [12, 71]. In particular, our theory provides a way to interpo-
late between the completely anisotropic atoms found in neural architectures with univariate
nonlinearities (k = (d  - 1)) to the completely isotropic atoms found in the theory of sparse
kernel expansions and radial basis functions (k = 0) in a similar vein to how \alpha -molecules
interpolate between ridgelets (anisotropic) and wavelets (isotropic) [22].

In section 5, we discuss how the native space \scrM k
\mathrm{L}(\BbbR d) can be viewed as an example of a

reproducing kernel Banach space (RKBS) [5, 34, 62, 72] as well as an example of a variation
space [4, 11, 31, 37, 56, 58, 57]. These are classical approaches used for the understanding of
neural networks through the lens of functional analysis and approximation theory. Thus, any
abstract result for RKBSs or variation spaces immediately applies to \scrM k

\mathrm{L}(\BbbR d).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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114 RAHUL PARHI AND MICHAEL UNSER

2. Mathematical preliminaries and notation. The Schwartz space of smooth and rapidly
decreasing functions on \BbbR d is denoted by \scrS (\BbbR d). Its continuous dual is the space \scrS \prime (\BbbR d) of
tempered distributions. We let Lp(\BbbR d) denote the Lebesgue space for 1 \leq p \leq \infty and define
the weighted L\infty -space

L\infty 
 - \alpha (\BbbR d) :=

\biggl\{ 
f :\BbbR d \rightarrow \BbbR is measurable : \| f\| L\infty 

 - \alpha 
:= ess sup

\bfitx \in \BbbR d

| f(\bfitx )| (1 + \| \bfitx \| 2) - \alpha <\infty 
\biggr\} 
.(2.1)

This is the space of growth-restricted functions with rate \alpha \in \BbbR . It is a Banach space that
can be identified as the continuous dual of the weighted L1-space

L1
\alpha (\BbbR d) :=

\biggl\{ 
f :\BbbR d \rightarrow \BbbR is measurable : \| f\| L1

\alpha 
:=

\int 
\BbbR d

| f(\bfitx )| (1 + \| \bfitx \| 2)\alpha d\bfitx <\infty 
\biggr\} 
.(2.2)

The Banach space of continuous functions vanishing at \pm \infty on \BbbR d equipped with the
L\infty -norm is denoted by C0(\BbbR d). By the Riesz--Markov--Kakutani representation theorem
[14, Chapter 7], its continuous dual can be identified with the Banach space of finite Radon
measures, denoted \scrM (\BbbR d). Since \scrS (\BbbR d) is dense in C0(\BbbR d), we have, by duality, that \scrM (\BbbR d)
is continuously embedded in \scrS \prime (\BbbR d). Given a space \scrX and a norm \| \cdot \| , the completion of \scrX 
in \| \cdot \| is a Banach space, denoted by (\scrX ,\| \cdot \| ). For example, we have, for 1 \leq p < \infty , that
Lp(\BbbR d) = (\scrS (\BbbR d),\| \cdot \| Lp), and C0(\BbbR d) = (\scrS (\BbbR d),\| \cdot \| L\infty ).

The Fourier transform of \varphi \in \scrS (\BbbR d) is defined as

\widehat \varphi (\bfitxi ) :=F\{ \varphi \} (\bfitxi ) =
\int 
\BbbR d

\varphi (\bfitx )e - \mathrm{i}\bfitxi T\bfitx d\bfitx , \bfitxi \in \BbbR d,(2.3)

where i2 = - 1. Consequently, the inverse Fourier transform of \widehat \varphi \in \scrS (\BbbR d) is given by

F - 1\{ \widehat \varphi \} (\bfitx ) = 1

(2\pi )d

\int 
\BbbR d

\widehat \varphi (\bfitxi )e\mathrm{i}\bfitxi T\bfitx d\bfitxi , \bfitx \in \BbbR d.(2.4)

These operators are extended to act on \scrS \prime (\BbbR d) by duality.
Any continuous linear shift-invariant (LSI) operator L : \scrS (\BbbR d)\rightarrow \scrS \prime (\BbbR d) is a convolution

operator specified by a unique kernel h \in \scrS \prime (\BbbR d) such that L\varphi = h \ast \varphi . Such operators can
also be specified in the Fourier domain by

L\varphi =F - 1\{ \widehat L\widehat \varphi \} ,(2.5)

where \widehat L\in \scrS \prime (\BbbR d) is the Fourier transform of the kernel h\in \scrS \prime (\BbbR d). The tempered distribution
h is the impulse response of L and the tempered distribution \widehat L is the Fourier symbol or
frequency response of L. We shall generally use upright, roman letters for LSI operators and
use the italic variant with a hat to denote its frequency response.

2.1. The \bfitk -plane transform. We are going to adopt the parameterization of the k-plane
transform from [47, section 4]. There, the space of k-planes is parameterized by the Cartesian
product of the Stiefel manifold with \BbbR d - k, where k is an integer such that 1\leq k < d. Let

Vd - k(\BbbR d) := \{ \bfA \in \BbbR (d - k)\times d :\bfA \bfA T = \bfI d - k\} (2.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 115

denote the Stiefel manifold. Then, the k-plane transform of \varphi \in \scrS (\BbbR d) is defined as

Rk\{ \varphi \} (\bfA , \bfitt ) =
\int 
\BbbR d

\varphi (\bfitx )\delta (\bfA \bfitx  - \bfitt )d\bfitx , (\bfA , \bfitt )\in (Vd - k(\BbbR d),\BbbR d - k),(2.7)

where \delta \in \scrS \prime (\BbbR d - k) is the (d - k)-variate Dirac impulse3 and the integral is understood as the
action of \delta (\bfA (\cdot )  - \bfitt ) \in \scrS \prime (\BbbR d) on \varphi \in \scrS (\BbbR d). Further, the dual transform (often called the
``backprojection"") of g \in L\infty (Vd - k(\BbbR d)\times \BbbR d - k) is given by

R\ast 
k\{ g\} (\bfitx ) =

\int 
Vd - k(\BbbR d)

g(\bfA ,\bfA \bfitx )d\bfA , \bfitx \in \BbbR d,(2.8)

where d\bfA denotes integration against the Haar measure of Vd - k(\BbbR d). Since we impose that
the rows of \bfA are orthonormal, we have that (\bfA , \bfitt ) and (\bfU \bfA ,\bfU \bfitt ) define the same k-plane,
for any orthogonal transformation \bfU \in Od - k(\BbbR ) (the orthogonal group in dimension (d - k)).
The main advantage of the proposed parameterization is that it will allow us to identify the
symmetries of k-plane domain as ``isotropic"" symmetries.

Letting \Xi k := Vd - k(\BbbR d)\times \BbbR d - k denote the k-plane domain, we define the space of Schwartz
functions on \Xi k, denoted by \scrS (\Xi k), as the space of smooth functions that are rapidly decreasing
in the \bfitt \in \BbbR d - k variable [20]. More specifically, we have that \scrS (\Xi k) =C\infty (Vd - k(\BbbR d)) \widehat \otimes \scrS (\BbbR d - k),
where \widehat \otimes denotes the topological tensor product, which is the completion of the algebraic ten-
sor product with respect to the projective topology [64, Chapter 43]. We state in Proposition
2.1 a classical result regarding the continuity and invertibility of the k-plane transform.

Proposition 2.1 (see [16, 20, 27, 47, 51, 59, 60]). The operator Rk continuously maps \scrS (\BbbR d)
into \scrS (\Xi k). Moreover,

R\ast 
kKd - k Rk = cd,k( - \Delta )

k

2 R\ast 
k Rk = cd,k R\ast 

k Rk( - \Delta )
k

2 = Id(2.9)

on \scrS (\BbbR d) with

cd,k =
1

(2\pi )k
| \BbbS k - 1| 

| \BbbS d - k - 1| 
1\prod d - 1

n=k| \BbbS n - 1| 
,(2.10)

where | \cdot | denotes the surface area. The underlying operators are the d-variate Laplacian
operator \Delta and the filtering operator4 Kd - k = cd,k( - \Delta d - k)

k/2, where \Delta d - k denotes the (d - k)-
variate Laplacian applied to the \bfitt \in \BbbR d - k variable. The filtering operator is equivalently
specified by the frequency response \widehat Kd - k(\bfitomega ) = cd,k\| \bfitomega \| k2, \bfitomega \in \BbbR d - k.

The k-plane transform has tight connections with the Fourier transform. This is summa-
rized in the so-called Fourier slice theorem.

3The distribution \delta \in \scrS \prime (\BbbR d - k) is such that \langle \delta ,\phi \rangle = \phi (\bfzero ) for all \phi \in \scrS (\BbbR d - k).
4In CT, this filter is referred to as the backprojection filter found in the filtered backprojection algorithm

for CT image reconstruction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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116 RAHUL PARHI AND MICHAEL UNSER

Proposition 2.2 ([47, Corollary 7.5]). Given \varphi \in \scrS (\BbbR d), we have that

(2.11) Rk\{ \varphi \} (\bfA , \cdot )\widehat (\bfitomega ) = \widehat \varphi (\bfA \sansT \bfitomega ), \bfitomega \in \BbbR d - k,\bfA \in Vd - k(\BbbR d),

where the Fourier transform on the left-hand side is the (d  - k)-variate transform and the
Fourier transform on the right-hand side is the d-variate Fourier transform.

Remark 2.3. The Fourier slice theorem can be extended to apply to members of \scrS \prime (\BbbR d) as
long as some additional care is taken regarding in what sense the equality in (2.11) holds [47,
Theorem 7.7].

Let \scrS k := Rk

\bigl( 
\scrS (\BbbR d)

\bigr) 
denote the range of the k-plane transform. The range \scrS k is a

strict subspace of \scrS (\Xi k) that satisfies certain consistency conditions (see [36, Chapter 4] for
a detailed discussion and references on this matter). We have the following additional result
regarding the continuity and invertibility of the k-plane transform.

Proposition 2.4 ([47, Corollary 5.3]). The operator Rk : \scrS (\BbbR d)\rightarrow \scrS k is a homeomorphism
with inverse R - 1

k =R\ast 
kKk : \scrS k \rightarrow \scrS (\BbbR d).

Proposition 2.4 motivates the following distributional extension of the k-plane transform
and related operators.

Definition 2.5 ([47, Definition 6.1]).
1. The distributional k-plane transform

Rk : \scrS \prime (\BbbR d)\rightarrow (Kd - k Rk (\scrS (\BbbR d)))\prime (2.12)

is defined to be the dual map of the homeomorphism R\ast 
k : Kd - k Rk

\bigl( 
\scrS (\BbbR d)

\bigr) 
\rightarrow \scrS (\BbbR d).

2. The distributional filtered k-plane transform

Kd - k Rk : \scrS \prime (\BbbR d)\rightarrow \scrS \prime 
k(2.13)

is defined to be the dual map of the homeomorphism R\ast 
kKd - k : \scrS k \rightarrow \scrS (\BbbR d).

3. The distributional backprojection

R\ast 
k : \scrS \prime 

k \rightarrow \scrS \prime (\BbbR d)(2.14)

is defined to be the dual map of the homeomorphism Rk : \scrS (\BbbR d)\rightarrow \scrS k.
4. The extended distributional backprojection

R\ast 
k : \scrS \prime (\Xi k)\rightarrow \scrS \prime (\BbbR d)(2.15)

is defined to be the dual map of the continuous operator Rk : \scrS (\BbbR d)\rightarrow \scrS (\Xi k), which is
well-defined since \scrS k is continuously embedded in \scrS (\Xi k).

Based on these definitions, we state in Theorem 2.6 a result on the invertibility of the
filtered k-plane transform on \scrS \prime (\BbbR d), which is the dual of Propositions 2.1 and 2.4.
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 117

Theorem 2.6. It holds that R\ast 
kKd - k Rk = Id on \scrS \prime (\BbbR d). Moreover, the filtered k-plane

transform Kd - k Rk : \scrS \prime (\BbbR d)\rightarrow \scrS \prime 
k is a homeomorphism with the inverse given by the backpro-

jection (Kd - k Rk)
 - 1 =R\ast 

k : \scrS \prime 
k \rightarrow \scrS \prime (\BbbR d).

While this setup provides an attractive formulation to handle the distributional exten-
sion of the k-plane transform and its dual, it turns out that the distribution spaces \scrS \prime 

k and\bigl( 
Kd - k Rk

\bigl( 
\scrS (\BbbR d)

\bigr) \bigr) \prime 
are actually equivalence classes of distributions [47]. Luckily, by working

with certain Banach subspaces that continuously embed into these distribution spaces, one can
identify a concrete member of the equivalence classes via continuous projection operators. To
this end, the results of this paper hinge on a nontrivial result of [47] regarding the invertibility
of the distributional dual k-plane transform on the space of isotropic Radon measures.

Consider the operator

P\mathrm{i}\mathrm{s}\mathrm{o}\{ g\} (\bfA , \bfitt ) = ⨍\mathrm{O}d - k(\BbbR )g(\bfU \bfA ,\bfU \bfitt )d\sigma (\bfU ),(2.16)

where --
\int 

denotes the average integral and \sigma is the Haar measure on Od - k(\BbbR ). This is a well-
defined operator that maps C0(\Xi k)\rightarrow C0(\Xi k) and, in particular, is the self-adjoint continuous
projector which extracts the isotropic part of a function [47, equation (8.10)]. By the Riesz--
Markov--Kakutani representation theorem, we can extend P\mathrm{i}\mathrm{s}\mathrm{o} = P\ast 

\mathrm{i}\mathrm{s}\mathrm{o} by duality to act on
\scrM (\Xi k) = (C0(\Xi k))

\prime , the Banach space of finite Radon measures on \Xi k. To this end, define

\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) := P\mathrm{i}\mathrm{s}\mathrm{o} (\scrM (\Xi k)) ,(2.17)

the Banach subspace of isotropic finite Radon measures on \Xi k. This Banach subspace is
complemented in \scrM (\Xi k) [47, Theorem 8.2] and so

\scrM (\Xi k) =\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\oplus (\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))
c(2.18)

with (\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))
c := (Id - P\mathrm{i}\mathrm{s}\mathrm{o}) (\scrM (\Xi k)). We also note that

\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) = (C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))
\prime ,(2.19)

where

C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) := P\mathrm{i}\mathrm{s}\mathrm{o} (C0(\Xi k)) = (\scrS k,\| \cdot \| L\infty ),(2.20)

where the last equality is from [47, equation (8.12)].

Proposition 2.7 (see [47, Theorems 8.1 and 8.2 and Corollary 8.3]). The Banach space
\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) continuously embeds into \scrS \prime 

k. Further, the distributional backprojection operator R\ast 
k

is invertible on \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k), so that

Kd - k Rk R\ast 
k = Id on \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k).(2.21)

Furthermore, the null space of R\ast 
k : \scrM (\Xi k) \rightarrow \scrS \prime (\BbbR d) is (\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))

c and so R\ast 
k (\scrM (\Xi k)) =

R\ast 
k (\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)).
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118 RAHUL PARHI AND MICHAEL UNSER

2.1.1. The case \bfitk = \bfzero . When k= 0, the k-plane transform of \varphi \in \scrS (\BbbR d) becomes

R0\{ \varphi \} (\bfA , \bfitt ) =
\int 
\BbbR d

\varphi (\bfitx )\delta (\bfA \bfitx  - \bfitt )d\bfitx =\varphi (\bfA T\bfitt ).(2.22)

Indeed, when k= 0, the matrix\bfA \in \BbbR d\times d is now an orthogonal matrix (i.e., \bfA T\bfA =\bfA \bfA T = \bfI d)
and \bfitt \in \BbbR d. The last equality of the above integral follows from the change of variables \bfity =
(\bfA \bfitx  - \bfitt ). In this case, it is clear that the range \scrS 0 is exactly the closed subspace of isotropic
functions in \scrS (\Xi 0), denoted by \scrS \mathrm{i}\mathrm{s}\mathrm{o}(\Xi 0). The fundamental results discussed previously trivially
hold in this limit setting. In particular, it is easy to check that

cd,0 R\ast 
0 R0 = Id on \scrS (\BbbR d),(2.23)

which is the same statement as R\ast 
0Kd R0 = Id since Kd = cd,0 Id (Proposition 2.1). Therefore,

in the remainder of the paper, when working with the k-plane transform for general k such
that 0\leq k < d, we shall not treat separately the case k= 0. We do warn the reader, however,
to be aware that the underlying mathematics of the (k = 0)-plane transform is much simpler
than that of 1\leq k < d.

2.2. Polynomial spaces and related projectors. The null space of the regularizer in the
learning problem (1.7) is the space of polynomials of degree n\mathrm{L} (see Lemma 3.5), which
depends on the operator L. This space is denoted \scrP n\mathrm{L}

(\BbbR d). To this end, we will be interested
in working with a biorthogonal system for this null space. We will use the biorthogonal system
from [67, section 2.2].

Remark 2.8. When the null space of L is trivial, we make the identifications n\mathrm{L} = ( - 1)
and \scrP n\mathrm{L}

(\BbbR d) = \{ 0\} , noting that any sum taken from n= 0 to ( - 1) is understood as 0.

The space \scrP n\mathrm{L}
(\BbbR d) is spanned by the monomial/Taylor basis

m\bfitn (\bfitx ) =
\bfitx \bfitn 

\bfitn !
,(2.24)

where \bfitn = (n1, . . . , nd)\in \BbbN d
0 is a multi-index. Accordingly, we have that

\scrP n\mathrm{L}
(\BbbR d) =

\left\{   \sum 
| \bfitn | \leq n\mathrm{L}

b\bfitn m\bfitn : b\bfitn \in \BbbR 

\right\}   \subset \scrS \prime (\BbbR d).(2.25)

Importantly, \scrP n\mathrm{L}
(\BbbR d) forms a finite-dimensional Banach subspace of \scrS \prime (\BbbR d). Since all

norms are equivalent in finite dimensions, the exact choice does not matter, but, for concrete-
ness, we equip \scrP n\mathrm{L}

(\BbbR d) with the norm

\| p\| \scrP n\mathrm{L}
:= \| (b\bfitn )| \bfitn | \leq n\mathrm{L}

\| 2,(2.26)

where the b\bfitn are the coefficients of p in the monomial/Taylor basis. While the dual space
\scrP \prime 
n\mathrm{L}
(\BbbR d) is also finite-dimensional, its ``abstract"" elements are actually equivalence classes

in \scrS \prime (\BbbR d). Following the approach from [67, section 2.2], we identify every dual element
p\ast \in \scrP \prime 

n\mathrm{L}
(\BbbR d) as a function in \scrS (\BbbR d) by working with a concrete dual basis \{ m\ast 

\bfitn \} | \bfitn | \leq n\mathrm{L}
that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

1/
25

 to
 1

37
.1

10
.3

4.
20

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 119

satisfies the biorthogonality property \langle m\ast 
\bfitn ,m\bfitn \prime \rangle = \delta [\bfitn  - \bfitn \prime ], where \delta [\cdot ] is the Kronecker

impulse which takes the value 1 when its input is 0 and 0 otherwise. Our specific choice is

m\ast 
\bfitn := ( - 1)| \bfitk | \partial \bfitn \kappa \mathrm{i}\mathrm{s}\mathrm{o} \in \scrS (\BbbR d),(2.27)

where \kappa \mathrm{i}\mathrm{s}\mathrm{o} \in \scrS (\BbbR d) is an isotropic function constructed in [67, Lemma 1]. Its frequency
response is such that \widehat \kappa \mathrm{i}\mathrm{s}\mathrm{o}(\bfitxi ) = \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitxi \| 2), where the radial frequency profile \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d} \in \scrS (\BbbR )
satisfies 0\leq \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d} \leq 1 and, for | \omega | \geq 1, \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\omega ) = 0.

The biorthogonal system \{ (m\ast 
\bfitn ,m\bfitn )\} | \bfitn | \leq n\mathrm{L}

allows us to define the projection onto \scrP n\mathrm{L}
(\BbbR d)

by the operator

P\scrP n\mathrm{L}
(\BbbR d)\{ f\} =

\sum 
\bfitn \leq n\mathrm{L}

\langle m\ast 
\bfitn , f\rangle m\bfitn .(2.28)

This projector continuously maps \scrS \prime (\BbbR d)\rightarrow \scrP n\mathrm{L}
(\BbbR d) (because m\ast 

\bfitn \in \scrS (\BbbR d)). Moreover, since
L\infty 
 - n\mathrm{L}

(\BbbR d) continuously embeds into \scrS \prime (\BbbR d), the restricted operator

P\scrP n\mathrm{L}
(\BbbR d) :L

\infty 
 - n\mathrm{L}

(\BbbR d)\rightarrow \scrP n\mathrm{L}
(\BbbR d)(2.29)

is continuous as well. Last, the finite dimensionality of \scrP n\mathrm{L}
(\BbbR d) ensures that \scrP n\mathrm{L}

(\BbbR d) is
complemented in L\infty 

 - n\mathrm{L}
(\BbbR d) [52, Lemma 4.21]. Thus, the complementary projector

(Id - P\scrP n\mathrm{L}
(\BbbR d)) :L

\infty 
 - n\mathrm{L}

(\BbbR d)\rightarrow L\infty 
 - n\mathrm{L}

(\BbbR d)(2.30)

is guaranteed to exist and be continuous.

3. Main results. We first define the class of operators that are admissible for the learning
problem in (1.7). These operators form a subclass of the so-called spline-admissible operators
[69, Definition 1].

Definition 3.1. A continuous LSI operator L : \scrS (\BbbR d) \rightarrow \scrS \prime (\BbbR d) is said to be k-plane-
admissible with a polynomial null space of degree n\mathrm{L} if

1. its adjoint L\ast is a continuous injection that maps \scrS (\BbbR d) into L1
n\mathrm{L}
(\BbbR d);

2. it is isotropic in the sense that its frequency response is continuous and satisfies \widehat L(\bfitxi ) =\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitxi \| 2) for some continuous univariate radial frequency profile \widehat L\mathrm{r}\mathrm{a}\mathrm{d} :\BbbR \rightarrow \BbbR ;
3. the radial frequency profile \widehat L\mathrm{r}\mathrm{a}\mathrm{d} does not vanish over \BbbR , except for a zero of order
\gamma \mathrm{L} \in (n\mathrm{L}, n\mathrm{L} + 1] at the origin, so that there exists a constant C > 0 satisfying

lim
\omega \rightarrow 0

\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\omega )

| \omega | \gamma \mathrm{L}
=C;(3.1)

4. there exist \gamma \prime \mathrm{L} > (d - k), C \prime > 0, and R> 0 such that

| \widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\omega )| \geq C \prime | \omega | \gamma \prime 
\mathrm{L}(3.2)

for all | \omega | >R.
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120 RAHUL PARHI AND MICHAEL UNSER

Remark 3.2. Item 3 implies that the extension by duality L : L\infty 
 - n\mathrm{L}

(\BbbR d) \rightarrow \scrS \prime (\BbbR d) of a
k-plane-admissible operator annihilates polynomials of degree at most n\mathrm{L}.

Remark 3.3. Item 4 guarantees that the order of the operator is sufficiently high to ensure
that the point evaluation functional is well-defined on the native space \scrM k

\mathrm{L}(\BbbR d). In particular,
this condition is reminiscent of the condition s > (d - k) on the smoothness index of an L1-
Sobolev space defined on (subsets of) \BbbR d - k to ensure the continuity of its members. Indeed,
when s > (d - k), the Sobolev embedding theorem guarantees that the L1-Sobolev space of
order s embeds into the space of continuous functions. In our setting, the condition \gamma \prime \mathrm{L} > (d - k)
plays the role of the smoothness index. This property is key to establishing the existence of
solutions to the learning problem (1.7).

3.1. Native spaces. The primary technical contribution of this paper is the careful treat-
ment of the distributional extension and (pseudo)invertibility of the operator LRk

:=Kd - k Rk L,
where L is a k-plane-admissible operator (Definition 3.1). This in turn allows us to define our
native (Banach) spaces. Indeed, for the definition of the native space in (1.5) to be coherent,
the action of LRk

on L\infty 
 - n\mathrm{L}

(\BbbR d) must be well-defined. Furthermore, as we shall see in Lemma
3.5, the null space of LRk

is exactly the space of polynomials of degree at most n\mathrm{L}. We then
use a technique from spline theory to ``factor out"" the null space of LRk

and identify the
subspace of \scrM k

\mathrm{L}(\BbbR d) on which LRk
is invertible [10, 12]. This allows us to identify \scrM k

\mathrm{L}(\BbbR d)
as the direct sum of two Banach spaces. Thus, it forms a Banach space when equipped with
the composite norm.

Lemma 3.4. Let L be a k-plane-admissible operator in the sense of Definition 3.1. Then,
the operator LRk

=Kd - k Rk L continuously maps L\infty 
 - n\mathrm{L}

(\BbbR d)\rightarrow \scrS \prime 
k.

Proof. It suffices to prove that the adjoint operator L\ast 
Rk

=L\ast R\ast 
kKd - k continuously maps

\scrS k \rightarrow L1
n\mathrm{L}
(\BbbR d). The result then follows by duality. Since R\ast 

kKd - k : \scrS k \rightarrow \scrS (\BbbR d) is a homeo-
morphism (Proposition 2.4), the lemma follows from item 1 in Definition 3.1.

Lemma 3.5. Let L be a k-plane-admissible operator in the sense of Definition 3.1. Then,
the null space of the operator LRk

= Kd - k Rk L : L\infty 
 - n\mathrm{L}

(\BbbR d) \rightarrow \scrS \prime 
k is the space of polynomials

of degree at most n\mathrm{L} on \BbbR d, denoted by \scrP n\mathrm{L}
(\BbbR d).

Proof. Let \scrN (LRk
) denote the null space of LRk

. More precisely,

\scrN (LRk
) = \{ f \in L\infty 

 - n\mathrm{L}
(\BbbR d) : LRk

\{ f\} = 0\} .(3.3)

From Remark 3.2, L annihilates polynomials of degree at most n\mathrm{L}. This implies that\scrN (LRk
)\supset 

\scrP n\mathrm{L}
(\BbbR d). However, given f \in L\infty 

 - n\mathrm{L}
(\BbbR d)\subset \scrS \prime (\BbbR d), from the Fourier slice theorem,

(3.4) LRk
\{ f\} (\bfA , \cdot )\widehat (\bfitomega ) = cd,k\| \bfitomega \| k2 \widehat L(\bfA \sansT \bfitomega ) \widehat f(\bfA \sansT \bfitomega ) = cd,k\| \bfitomega \| k2 \widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2) \widehat f(\bfA \sansT \bfitomega ).

Note that the product in the last equality must be a well-defined tempered distribution (in
the \bfitomega variable) since LRk

:L\infty 
 - n\mathrm{L}

(\BbbR d)\rightarrow \scrS \prime 
k is well-defined by Lemma 3.4. Due to the vanishing

property in item 3 of Definition 3.1, this quantity is 0 if and only if \widehat f is supported only at
\bfzero , in which case f is a polynomial. Combined with the growth restriction f \in L\infty 

 - n\mathrm{L}
(\BbbR d), we

have that f must be a polynomial of degree at most n\mathrm{L}. Therefore, \scrN (LRk
)\subset \scrP n\mathrm{L}

(\BbbR d).
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 121

From Lemmas 3.4 and 3.5, we deduce that the native space in (1.5) is well-defined and
that the null space of LRk

is the finite-dimensional Banach space \scrP n\mathrm{L}
(\BbbR d). The next two

technical theorems (Theorems 3.6 and 3.7) establish the Banach structure of the native space.

Theorem 3.6. Let L be a k-plane-admissible operator in the sense of Definition 3.1. Then,
the operator LRk

= Kd - k Rk L maps \scrM k
\mathrm{L}(\BbbR d) \rightarrow \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k). Furthermore, there exists an

operator L\dagger 
Rk

that continuously maps \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\rightarrow L\infty 
 - n\mathrm{L}

(\BbbR d)\subset \scrS \prime (\BbbR d) and is such that

LRk
L\dagger 

Rk
\{ \mu \} = \mu for all \mu \in \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k),(3.5)

L\dagger 
Rk

LRk
\{ f\} = (Id - P\scrP n\mathrm{L}

(\BbbR d))\{ f\} for all f \in \scrM k
\mathrm{L}(\BbbR d).(3.6)

This operator is realized by

L\dagger 
Rk

= (Id - P\scrP n\mathrm{L}
(\BbbR d))L

 - 1 R\ast 
k,(3.7)

where L - 1 is the operator specified by the frequency response \bfitxi \mapsto \rightarrow 1/\widehat L(\bfitxi ). Furthermore, L\dagger 
Rk

is an integral operator specified by the kernel (\bfitx , (\bfA , \bfitt )) \mapsto \rightarrow g\bfA ,\bfitt (\bfitx ) that takes the form

g\bfA ,\bfitt (\bfitx ) = \rho \mathrm{L}(\bfA \bfitx  - \bfitt ) - 
\sum 

| \bfitk | \leq n\mathrm{L}

\langle m\ast 
\bfitk , \rho \mathrm{L}(\bfA (\cdot ) - \bfitt )\rangle m\bfitk (\bfitx ),(3.8)

where \rho \mathrm{L} = F - 1
d - k\{ 1/\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \cdot \| 2)\} and \{ (m\ast 

\bfitn ,m\bfitn )\} | \bfitn | \leq n\mathrm{L}
are specified in subsection 2.2, and

where F - 1
d - k denotes the (d - k)-variate inverse Fourier transform. This kernel satisfies the

stability/continuity bound

sup
\bfitx \in \BbbR d

(\bfA ,\bfitt )\in \Xi k

| g\bfA ,\bfitt (\bfitx )| (1 + \| \bfitx \| 2) - n\mathrm{L} <\infty (3.9)

with

(\bfA , \bfitt ) \mapsto \rightarrow g\bfA ,\bfitt (\bfitx 0)\in C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)(3.10)

for any fixed \bfitx 0 \in \BbbR d. Thus, for \mu \in \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k),

L\dagger 
Rk

\{ \mu \} (\bfitx ) =
\int 
\Xi k

g\bfA ,\bfitt (\bfitx )d\mu (\bfA , \bfitt ), \bfitx \in \BbbR d.(3.11)

Theorem 3.7. Consider the setting of Theorem 3.6. Then, the following hold.
1. The range space \scrV := L\dagger 

Rk
(\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)) is a Banach space when equipped with the norm

\| f\| \scrV := \| LRk
f\| \scrM .(3.12)

This Banach space is isometrically isomorphic to \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k).
2. The native space \scrM k

\mathrm{L}(\BbbR d) is decomposable as the direct sum of Banach spaces

\scrM k
\mathrm{L}(\BbbR d) = \scrV \oplus \scrP n\mathrm{L}

(\BbbR d) = L\dagger 
Rk

(\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))\oplus \scrP n\mathrm{L}
(\BbbR d).(3.13)
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122 RAHUL PARHI AND MICHAEL UNSER

3. The native space \scrM k
\mathrm{L}(\BbbR d) forms a bona fide Banach space when equipped with the

norm

\| f\| \scrM k
\mathrm{L}
:= \| LRk

f\| \scrM + \| P\scrP n\mathrm{L}
(\BbbR d) f\| \scrP n\mathrm{L}

.(3.14)

Furthermore, \scrM k
\mathrm{L}(\BbbR d) is isometrically isomorphic to \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\times \scrP n\mathrm{L}

(\BbbR d) via the map

f =L\dagger 
Rk

\{ u\} + p \mapsto \rightarrow (u,p),(3.15)

where u=LRk
\{ f\} and p=P\scrP n\mathrm{L}

(\BbbR d) f .

4. For any \bfitx 0 \in \BbbR d, the shifted Dirac impulse (point evaluation functional) \delta (\cdot  - \bfitx 0) :
f \mapsto \rightarrow f(\bfitx 0) is weak\ast -continuous5 on \scrM k

\mathrm{L}(\BbbR d).

The proofs of Theorems 3.6 and 3.7 appear in Appendices A and B, respectively.

3.2. Optimality of neural architectures with multivariate nonlinearities. Having estab-
lished the properties of the native space \scrM k

\mathrm{L}(\BbbR d) in subsection 3.1, we can now prove our
main theorem regarding the function-space optimality of neural architectures with multivari-
ate nonlinearities.

Theorem 3.8. Let \scrL (\cdot , \cdot ) : \BbbR \times \BbbR \rightarrow \BbbR be convex, coercive, and lower-semicontinuous in
its second argument and let L be a k-plane-admissible operator in the sense of Definition 3.1.
Then, for any finite data set \{ (\bfitx m, ym)\} Mm=1 \subset \BbbR d \times \BbbR for which the data-fitting problem is
well-posed 6 over \scrP n\mathrm{L}

(\BbbR d), the solution set to the data-fitting variational problem

S := argmin
f\in \scrM k

\mathrm{L}(\BbbR d)

M\sum 
m=1

\scrL (ym, f(\bfitx m)) + \lambda \| Kd - k Rk Lf\| \scrM (3.16)

is nonempty, convex, and weak\ast -compact. If \scrL (\cdot , \cdot ) is strictly convex (or if it imposes the
equality ym = f(\bfitx m) for m = 1, . . . ,M), then S is the weak\ast -closure of the convex hull of its
extreme points, which can all be expressed as

f\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}(\bfitx ) = c(\bfitx ) +

N\sum 
n=1

vn \rho \mathrm{L}(\bfA n\bfitx  - \bfitt n),(3.17)

where the number N of atoms satisfies N \leq (M  - dim\scrP n\mathrm{L}
(\BbbR d)), and, for n = 1, . . . ,N ,

vn \in \BbbR \setminus \{ 0\} , \bfA n \in Vd - k(\BbbR d), and \bfitt n \in \BbbR d - k. The function c \in \scrP n\mathrm{L}
(\BbbR d) is a polynomial

of degree at most n\mathrm{L} and \rho \mathrm{L} : \BbbR d - k \rightarrow \BbbR d is a (d  - k)-variate nonlinearity given by \rho \mathrm{L} =
F - 1

d - k\{ 1/\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \cdot \| 2)\} , where F - 1
d - k is the (d - k)-variate inverse Fourier transform. Finally,

the regularization cost, which is common to all solutions, is

\| Kd - k Rk Lf\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\| \scrM =

N\sum 
n=1

| vn| = \| \bfitv \| 1.(3.18)

The proof of the theorem requires the following proposition.

5In particular, we prove that (\scrM k
\mathrm{L}(\BbbR d),\| \cdot \| \scrM k

\mathrm{L}
) can be identified as the dual of some primary Banach space,

which allows us to equip \scrM k
\mathrm{L}(\BbbR d) with a weak\ast topology.

6The data-fitting problem is well-posed over the null space when the classical least-squares polynomial-
fitting problem admits a unique solution with respect to the data \{ (\bfitx m, ym)\} Mm=1 \subset \BbbR d \times \BbbR .
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 123

Proposition 3.9 ([47, Lemma 10.2]). The isotropic shifted Dirac impulse \delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA 0, \bfitt 0))\in 
\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) defined by

\delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA 0, \bfitt 0)) := P\mathrm{i}\mathrm{s}\mathrm{o}\{ \delta (\cdot  - (\bfA 0, \bfitt 0)))\} ,(3.19)

where \delta (\cdot  - (\bfA 0, \bfitt 0)) = \delta (\cdot  - \bfA 0)\delta (\cdot  - \bfitt 0) \in \scrM (\Xi k) is the ``classical"" Dirac impulse on \Xi k,
satisfies the following properties:

1. Sampling: For any \psi \in C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k),

\langle \delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA 0, \bfitt 0)),\psi \rangle k =\psi (\bfA 0, \bfitt 0).(3.20)

2. Rotation invariance: For any \bfU \in Od - k(\BbbR ),

\delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA 0, \bfitt 0)) = \delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfU \bfA 0,\bfU \bfitt 0)).(3.21)

3. Unit norm: \| \delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA 0, \bfitt 0))\| \scrM = 1.
4. Linear combination: For any set \{ (\bfA n, \bfitt n)\} Nn=1 \subset \Xi k of distinct points,\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

N\sum 
n=1

an\delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA n, \bfitt n))

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\scrM 

=

N\sum 
n=1

| an| = \| \bfita \| 1.(3.22)

5. Extreme points of B\scrM \mathrm{i}\mathrm{s}\mathrm{o}
:= \{ e \in \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) : \| e\| \scrM \leq 1\} : If e \in ExtB\scrM \mathrm{i}\mathrm{s}\mathrm{o}

, then
e=\pm \delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA n, \bfitt n)) for some (\bfA n, \bfitt n)\in \Xi k.

Proof of Theorem 3.8. The proof relies on the abstract representer theorem in [68] (see
also [6, 7, 65]). From the assumptions on the loss function combined with the weak\ast -continuity
of the point evaluation functional on \scrM k

\mathrm{L}(\BbbR d) (item 4 in Theorem 3.7), our setting coincides
with the hypotheses of [68, Theorem 3]. First, this abstract result ensures that the solution set
S is nonempty, convex, and weak\ast -compact. Second, it ensures that, when the loss function
is strictly convex (or if it imposes the equality ym = f(\bfitx m) for m = 1, . . . ,M), S is the
weak\ast -closure of the convex hull of its extreme points, which can all be expressed as

f\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}(\bfitx ) = c(\bfitx ) +

N\sum 
n=1

vnen(\bfitx ),(3.23)

where the number N of atoms satisfies N \leq (M  - dim\scrP n\mathrm{L}
(\BbbR d)), c(\cdot ) is in the null space of

the regularizer (i.e., c \in \scrP n\mathrm{L}
(\BbbR d)), and, for n = 1, . . . ,N , vn \in \BbbR \setminus \{ 0\} and en is an extreme

point of the unit regularization ball

B :=
\Bigl\{ 
f \in \scrM k

\mathrm{L}(\BbbR d) : \| Kd - k Rk Lf\| \scrM \leq 1
\Bigr\} 
.(3.24)

From item 2 in Theorem 3.7, we have the direct-sum decomposition of the native space as

\scrM k
\mathrm{L}(\BbbR d) = \scrV \oplus \scrP n\mathrm{L}

(\BbbR d) = L\dagger 
Rk

(\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))\oplus \scrP n\mathrm{L}
(\BbbR d).(3.25)

Since L\dagger 
Rk

:\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\rightarrow \scrV is an isometric isomorphism (item 1 in Theorem 3.7), the extreme

points of B take the form L\dagger 
Rk

(ExtB\scrM \mathrm{i}\mathrm{s}\mathrm{o}
) plus a polynomial term in \scrP n\mathrm{L}

(\BbbR d). From item 5
in Proposition 3.9, it then follows that

en =L\dagger 
Rk

\{ \pm \delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA n, \bfitt n))\} + p=\pm \rho \mathrm{L}(\bfA n(\cdot ) - \bfitt n) + \widetilde p(3.26)

with (\bfA n, \bfitt n)\in \Xi k and p, \widetilde p\in \scrP n\mathrm{L}
(\BbbR d).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

1/
25

 to
 1

37
.1

10
.3

4.
20

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



124 RAHUL PARHI AND MICHAEL UNSER

A calculation in the Fourier domain reveals that L\{ \rho \mathrm{L}(\bfA (\cdot )  - \bfitt )\} = \delta (\bfA (\cdot )  - \bfitt ) for
(\bfA , \bfitt ) \in \Xi k. Next, we invoke the property that Kd - k Rk\{ \delta (\bfA (\cdot )  - \bfitt )\} = \delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA , \bfitt ))
[47, equation (9.16)], which yields that

Kd - k Rk L\{ f\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\} =
N\sum 

n=1

vn\delta \mathrm{i}\mathrm{s}\mathrm{o}(\cdot  - (\bfA n, \bfitt n)).(3.27)

Finally, by item 4 in Proposition 3.9, we have that \| Kd - k Rk Lf\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{e}\| \scrM =
\sum N

n=1| vn| = \| \bfitv \| 1,
which proves the theorem.

3.2.1. Discussion. The main takeaway from Theorem 3.8 is that sparse neural architec-
tures (sparse in the sense that there are fewer neurons than data) are solutions to variational
problems over\scrM k

\mathrm{L}(\BbbR d). In particular, the regularity of functions imposed by the Banach struc-
ture of\scrM k

\mathrm{L}(\BbbR d) explains the variational optimality of the architectures in (3.17). Furthermore,
by the isomorphism in item 3 of Theorem 3.7, we see that \scrM k

\mathrm{L}(\BbbR d) is a nonreflexive Banach
space (since \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) is nonreflexive), which shows that \scrM k

\mathrm{L}(\BbbR d) differs in a fundamental
way from a Hilbert space. Said differently, Theorem 3.8 provides a function-space framework
for neural networks that differs in a fundamental way from the (Hilbertian) framework of the
neural tangent kernel [26].

The two extremes of the theorem (k = 0 and k = (d - 1)) capture well-studied problems.
Indeed, when k= 0, we can take advantage of the fact that the effect of the k-plane transform
essentially disappears. Indeed, when k= 0 we have (see subsection 2.1.1) that

\| Kd R0Lf\| \scrM (\Xi 0) = cd,0\| (\bfA , \bfitt ) \mapsto \rightarrow L\{ f\} (\bfA T\bfitt )\| \scrM (\Xi 0) = \| Lf\| \scrM (\BbbR d).(3.28)

Therefore, the variational problem in (3.16) reduces to the well-studied variational problem
for L-splines [13, 69]. Since L is isotropic from the admissibility assumptions (Definition 3.1),
the atoms \rho \mathrm{L} are radial basis functions.

For these problems, the classical theory [13, 69] suggests that the extreme point solutions
are built from atoms of the form \rho \mathrm{L}(\cdot  - \bfittau n), \bfittau n \in \BbbR d, where \rho \mathrm{L} : \BbbR d \rightarrow \BbbR is the (canonical)
Green's function of L defined in the Fourier domain by \widehat \rho \mathrm{L} = 1/\widehat L. We can quickly see that
Theorem 3.8 recovers this result since the atoms take the form

\bfitx \mapsto \rightarrow \rho \mathrm{L}(\bfA n\bfitx  - \bfitt n) = \rho \mathrm{L}(\bfA 
T
n\bfA \bfitx  - \bfA T

n\bfitt n) = \rho \mathrm{L}(\bfitx  - \bfA T
n\bfitt n) = \rho \mathrm{L}(\bfitx  - \bfittau n),(3.29)

where we made the substitution \bfittau n =\bfA T
n\bfitt n \in \BbbR d in the last equality. Here, we used the fact

that \bfA \bfA T =\bfA T\bfA = \bfI d when \bfA \in Vd(\BbbR d) (i.e., the k= 0 Stiefel manifold is the space of (d\times d)
orthogonal matrices).

At the opposite extreme, when k= (d - 1), the atoms take the form

\bfitx \mapsto \rightarrow \rho \mathrm{L}(\bfitalpha 
T\bfitx  - t),(3.30)

where \rho \mathrm{L} : \BbbR \rightarrow \BbbR is the Green's function of the univariate operator L\mathrm{r}\mathrm{a}\mathrm{d}, specified by the
frequency response \widehat L\mathrm{r}\mathrm{a}\mathrm{d} of the univariate radial profile of L. These atoms are classical neurons
with univariate nonlinearities. This problem was first studied in [43] with L\mathrm{r}\mathrm{a}\mathrm{d} = \partial mt , which
corresponds to nonlinearities proportional to the truncated power functions t \mapsto \rightarrow tm - 1

+ (which
is the ReLU when m= 2), and then generalized to other regularization operators L in [66].
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 125

4. Observations and examples of compatible neural architectures. Since Theorem 3.8
guarantees the existence of a solution to (3.16) that takes the form in (3.17), we can always
find an admissible solution by solving the neural network training problem

min
\bfittheta 

\Biggl( 
M\sum 

m=1

\scrL (ym, f\bfittheta (\bfitx m)) + \lambda 

N\sum 
n=1

| vn| 

\Biggr) 
s.t. \bfA n\bfA 

T
n = \bfI d - k, n= 1, . . . ,N,(4.1)

for some fixed width N \geq M with

f\bfittheta (\bfitx ) = c(\bfitx ) +

N\sum 
n=1

vn \rho \mathrm{L}(\bfA n\bfitx  - \bfitt n), \bfitx \in \BbbR d, \bfittheta = \{ vn,\bfA n, \bfitt n\} Nn=1 \cup \{ c(\cdot )\} .(4.2)

The assumption that N \geq M ensures that a solution to the variational problem in (3.16) exists
in the neural network parameter space (indexed by \bfittheta ) thanks to the bound in Theorem 3.8.
This assumption implies that, as long as the neural network problem is critically parameterized
or overparameterized, its solutions will also be solutions to the variational problem in Theorem
3.8. Thus, this result provides insight on the role of overparameterization. We also remark that
the constraint on the weight matrices in (4.1) corresponds to orthogonal weight normalization.
The latter has become a popular architectural choice as it has been shown to increase the
stability and improve the generalization performance of neural networks [2, 24, 25, 33].

The nonlinearity \rho \mathrm{L} : \BbbR d - k \rightarrow \BbbR d - k that appears in (3.17) can be viewed as the Green's
function of the operator Ld - k : \scrS (\BbbR d - k)\rightarrow \scrS \prime (\BbbR d - k) which shares the radial profile \widehat L\mathrm{r}\mathrm{a}\mathrm{d} of the
k-plane-admissible operator L. That is to say,

\widehat Ld - k(\bfitomega ) = \widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2).(4.3)

Furthermore, due to the intertwining properties of the k-plane transform [47, Corollary 7.8],
it turns out that the regularization operator in (3.16) has the alternative specification

Kd - k Rk L=Ld - kKd - k Rk .(4.4)

The framework of Theorem 3.8 encapsulates many neural architectures. The prototypical
example of such an operator is the fractional Laplacian L= ( - \Delta )

\alpha 

2 and, so, Ld - k = ( - \Delta d - k)
\alpha 

2 .
The radial profile for this family of operators is

\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\omega ) = | \omega | \alpha .(4.5)

From Definition 3.1, the reader can readily verify that this operator is k-plane-admissible
for \alpha > (d  - k). This simple operator encapsulates several known results. At one extreme
(k= (d - 1)), we recover7 the classical ReLU neurons by the choice L= ( - \Delta ) [41, 43]. At the
opposite extreme (k= 0), from subsection 3.2.1, we see that we recover a sparse variant of the

7Technically, \rho ( - \Delta )(t) = | t| /2 in this case, but since t \mapsto \rightarrow | t| /2 differs from the ReLU t \mapsto \rightarrow t+ by a null space
component (affine function), the ReLU and absolute value nonlinearity are treated the same in this framework.
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126 RAHUL PARHI AND MICHAEL UNSER

classical thin-plate/polyharmonic spline radial basis functions of Duchon [12] by the choice
L= ( - \Delta )

\alpha 

2 , \alpha > d.

In the intermediate regime 1 \leq k \leq (d  - 2), we can choose Ld - k = ( - \Delta d - k)
1+(d - k)

2 so
that \rho \mathrm{L}(\bfitt ) \propto \| \bfitt \| 2, \bfitt \in \BbbR d - k, is the norm activation function that has been used for neural
architectures in [23]. These observations follow from the fact that the Green's function of the
fractional Laplacian ( - \Delta n)

\alpha 

2 (which acts on n-variables) for \alpha >n takes the form

k\alpha ,n(\bfitt ) =F - 1

\biggl\{ 
1

\| \cdot \| 2

\biggr\} 
(\bfitt ) =

\left\{     
A\alpha ,n\| \bfitt \| \alpha  - n

2 , \alpha  - n \not \in 2\BbbN ,
Bm,n\| \bfitt \| 2m2 log\| \bfitt \| 2, \alpha  - n= 2m,m\in \BbbN ,
\Delta  - m

n \{ \delta \} ,  - \alpha /2 =m,m\in \BbbN ,
(4.6)

with \bfitt \in \BbbR n, A\alpha ,n = \Gamma ((n - \alpha )/2)
2\alpha \pi n/2\Gamma (\alpha /2) , and Bm,n = ( - 1)1+m

22m+n - 1\pi n/2\Gamma (m+n/2)m! [17, 53]. In general, there
exist many nonlinearities that are compatible with the presented framework. All that needs
to be verified is the admissibility conditions (Definition 3.1) of the underlying regularization
operator.

5. Connections to RKBS methods and variation spaces. After [43], a recent line of
research has been trying to understand neural networks through the lens of RKBSs [5, 62].
These works consider Banach spaces defined on, say, \BbbR d whose members are defined as integral
combinations of atoms from some continuously indexed dictionary \scrD . The elements of the
dictionary are assumed to be continuously indexed by \xi \in \Xi , where \Xi is assumed to be some
locally compact Hausdorff space. That is, \scrD = \{ \varphi \xi \} \xi \in \Xi , with the additional hypothesis that
\xi \mapsto \rightarrow \varphi \xi (\bfitx )\in C0(\Xi ) for any \bfitx \in \BbbR d.

It turns out that the space

\scrB (\BbbR d) :=

\biggl\{ 
f :\BbbR d \rightarrow \BbbR is measurable : there exists \mu \in \scrM (\Xi ) s.t. f =

\int 
\Xi 
\varphi \xi d\mu (\xi )

\biggr\} 
(5.1)

forms a Banach space when equipped with the norm

\| f\| \scrB := inf
\mu \in \scrM (\Xi )

\| \mu \| \scrM s.t. f =

\int 
\Xi 
\varphi \xi d\mu (\xi ).(5.2)

The assumptions on \scrD = \{ \varphi \xi \} \xi \in \Xi ensure that the point evaluation is continuous on \scrB (\BbbR d) (i.e.,
\delta (\cdot  - \bfitx 0)\in \scrB \prime (\BbbR d)). Such Banach spaces are referred to as RKBSs [34, 72]. An RKBS formed
from integral combinations of atoms from some continuously indexed dictionary is an integral
RKBS (I-RKBS) [62]. With this formalism, [5, 62] study many properties of \scrB (\BbbR d) as well
as data-fitting problems over these spaces with associated representer theorems. We remark
that, thanks to the assumption \xi \mapsto \rightarrow \varphi \xi (\bfitx ) \in C0(\Xi ) for any \bfitx \in \BbbR d, these authors implicitly
ensure that the point evaluation is actually weak\ast -continuous on \scrB (\BbbR d), which is stronger
than standard continuity. This property is critical in proving the existence of solutions to
data-fitting problems over these spaces.

Our native spaces \scrM k
\mathrm{L}(\BbbR d) are compatible with the I-RKBS framework. We first note

that item 4 in Theorem 3.7 ensures that the point evaluation is weak\ast -continuous and, hence,
continuous on \scrM k

\mathrm{L}(\BbbR d). Thus, \scrM k
\mathrm{L}(\BbbR d) is an RKBS. Next, we have the direct-sum decompo-

sition

\scrM k
\mathrm{L}(\BbbR d) = L\dagger 

Rk
(\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))\oplus \scrP n\mathrm{L}

(\BbbR d) = L\dagger 
Rk

(\scrM (\Xi k))\oplus \scrP n\mathrm{L}
(\BbbR d),(5.3)
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 127

where the first equality is from item 2 in Theorem 3.7 and the second inequality follows
since the null space of R\ast 

k is (\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))
c (recall that L\dagger 

Rk
= (Id - P\scrP n\mathrm{L}

(\BbbR d))L
 - 1 R\ast 

k and see

Proposition 2.7). This immediately implies that \scrM k
\mathrm{L}(\BbbR d) is the direct sum of an I-RKBS with

\scrP n\mathrm{L}
(\BbbR d), where the dictionary is composed of the kernels g\bfA ,\bfitt from (3.8), continuously indexed

by (\bfA , \bfitt )\in \Xi k. This correspondence allows us to directly apply any I-RKBS developments to
\scrM k

\mathrm{L}(\BbbR d).
The study of variation spaces to understand neural networks is a classical endeavor [31, 37].

These spaces have received renewed interest [4, 11, 56, 58, 57] as a means toward the under-
standing of the reason why neural networks seem to ``break"" the curse of dimensionality
through the lens of nonlinear approximation theory. It turns out that the variation space for
a dictionary \scrD exactly coincides with the I-RKBS as long as the members of \scrD are sufficiently
regular (see [57, Lemma 3]). Indeed, in that case, the variation space for \scrD is the Banach space
(\scrB (\BbbR d),\| \cdot \| \scrB ) defined in (5.1). Thus, \scrM k

\mathrm{L}(\BbbR d) can also be viewed as a variation space. The
investigation of the implications of these tight connections to I-RKBS and variation spaces
toward the understanding of neural architectures with multivariate nonlinearities is a direction
for future work.

Appendix A. Proof of Theorem \bfthree .\bfsix .

Proof. We first note that LRk
maps \scrM k

\mathrm{L}(\BbbR d)\rightarrow \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) by design due to the isotropic
symmetry of the k-plane domain. The remainder of the proof is divided into three parts.

Part (I): Existence/continuity of L\dagger 
Rk

and the right-inverse property (3.5). We first note

that L\ast : \scrS (\BbbR d) \rightarrow L1
n\mathrm{L}
(\BbbR d) is a continuous injection (item 1 in Definition 3.1). Therefore,

there exists an inverse operator L\ast  - 1 : L\ast \bigl( \scrS (\BbbR d)
\bigr) 
\rightarrow \scrS (\BbbR d) such that L\ast  - 1L\ast = Id on \scrS (\BbbR d).

In particular, L\ast  - 1 is the LSI operator specified by the frequency response \bfitxi \mapsto \rightarrow 1/\widehat L(\bfitxi ) (since
L\ast is necessarily self-adjoint from item 2 in Definition 3.1).

Next, we define the operator

L\dagger \ast 
Rk

:=Rk L
 - 1\ast (Id - P\ast 

\scrP n\mathrm{L}
(\BbbR d)),(A.1)

where

P\ast 
\scrP n\mathrm{L}

(\BbbR d)\{ f\} =
\sum 

| \bfitn | \leq n\mathrm{L}

\langle m\bfitn , f\rangle m\ast 
\bfitn ,(A.2)

which is the projection of f onto the dual space
\bigl( 
\scrP n\mathrm{L}

(\BbbR d)
\bigr) \prime \subset \scrS (\BbbR d). By recalling from (2.24)

that m\bfitn (\bfitx ) = \bfitx \bfitn /\bfitn !, we see that (A.2) is a well-defined operator as long as f has sufficient
decay (e.g., f \in L\ast \bigl( \scrS (\BbbR d)

\bigr) 
\subset L1

n\mathrm{L}
(\BbbR d)). This reveals that

L\dagger \ast 
Rk

: L\ast (\scrS (\BbbR d))\rightarrow \scrS k.(A.3)

To check the continuity of this operator, we characterize the boundedness of the (Schwartz)
kernel of L\dagger \ast 

Rk
. This kernel can be formally identified with ((\bfA , \bfitt ),\bfitx ) \mapsto \rightarrow h\bfitx (\bfA , \bfitt ) := L\dagger \ast 

Rk
\{ \delta (\cdot  - 

\bfitx )\} (\bfA , \bfitt ). By the Fourier slice theorem,
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128 RAHUL PARHI AND MICHAEL UNSER

(A.4)

h\bfitx (\bfA , \cdot )\widehat (\bfitomega ) =
F

\Bigl\{ 
\delta (\cdot  - \bfitx ) - 

\sum 
| \bfitn | \leq n\mathrm{L}

\langle m\bfitn , \delta (\cdot  - \bfitx )\rangle m\ast 
\bfitn 

\Bigr\} 
(\bfA \sansT \bfitomega )\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)

=
e - \mathrm{i}\bfitomega \sansT \bfA \bfitx  - 

\sum 
| \bfitn | \leq n\mathrm{L}

\bfitx \bfitn 

\bfitn ! \widehat m\ast 
\bfitn (\bfA 

\sansT \bfitomega )\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)

=
e - \mathrm{i}\bfitomega \sansT \bfA \bfitx  - 

\sum 
| \bfitn | \leq n\mathrm{L}

\bfitx \bfitn 

\bfitn ! ( - i\bfA \sansT \bfitomega )\bfitn \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)

=
e - \mathrm{i}\bfitomega \sansT \bfA \bfitx  - 

\sum n\mathrm{L}
n=0

( - \mathrm{i}\bfitomega \sansT \bfA \bfitx )n

n! \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)
,

=
e - \mathrm{i}\bfitomega \sansT \bfA \bfitx  - \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)

\sum n\mathrm{L}
n=0

( - \mathrm{i}\bfitomega \sansT \bfA \bfitx )n

n!\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)
,

where the penultimate line holds by the multinomial expansion. Note that the quantity in
(A.4) is well-defined despite the pole of multiplicity \gamma \mathrm{L} at \bfitomega = \bfzero . Since \gamma \mathrm{L} \in (n\mathrm{L}, n\mathrm{L} + 1], the
form of the numerator ensures a proper pole-zero cancellation with the denominator. Indeed,
by Taylor's theorem, when t\in \BbbR is in a neighborhood of 0, we have that

et  - 
n\mathrm{L}\sum 
n=1

tn

n!
=O(tn\mathrm{L}+1).(A.5)

By the identification of the numerator8 in (A.4) with the above display combined with
the property of item 3 in Definition 3.1, we have that (A.4) is well-defined. Next, since\widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2) \leq 1 for \| \bfitomega \| 2 < 1 and \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2) = 0 for \| \bfitomega \| 2 \geq 1 (subsection 2.2), on one hand

we have for \| \bfitomega \| 2 < 1 that | h\bfitx (\bfA , \cdot )\widehat (\bfitomega )| is bounded by a constant which depends on \bfA and
\bfitx . To see the dependence on \bfA and \bfitx , we note that

n\mathrm{L}\sum 
n=0

1

n!
| i\bfitomega T\bfA \bfitx | n

\leq 
n\mathrm{L}\sum 
n=0

1

n!
\| \bfitomega \| n2\| \bfA \bfitx \| n2

\leq 
n\mathrm{L}\sum 
n=0

(n\mathrm{L}  - n)!

n\mathrm{L}!

n\mathrm{L}!

n!(n\mathrm{L}  - n)!
\| \bfA \bfitx \| n2

\leq 
n\mathrm{L}\sum 
n=0

n\mathrm{L}!

n!(n\mathrm{L}  - n)!
\| \bfA \bfitx \| n2

= (1+ \| \bfA \bfitx \| 2)n\mathrm{L} .(A.6)

Thus, there exists a universal constant C0 > 0 such that

(A.7) | h\bfitx (\bfA , \cdot )\widehat (\bfitomega )| \leq C0(1 + \| \bfA \bfitx \| 2)n\mathrm{L} , \| \bfitomega \| 2 < 1.

8This identification is valid by the substitution t= - i\bfitomega T\bfA \bfitx and noting that \widehat \kappa \mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2) = 1 for \| \bfitomega \| 2 <R0,
for some R0 \leq 1/2 [67, p. 6].
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 129

On the other hand, when \| \bfitomega \| 2 \geq 1, we have that

(A.8) | h\bfitx (\bfA , \cdot )\widehat (\bfitomega )| \leq 1\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)
\leq C0(1 + \| \bfA \bfitx \| 2)n\mathrm{L}\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)

.

From item 4 in Definition 3.1, we have that

1\widehat L\mathrm{r}\mathrm{a}\mathrm{d}(\| \bfitomega \| 2)
\leq \| \bfitomega \|  - \gamma \prime 

\mathrm{L}

2

C \prime ,(A.9)

where \gamma \prime \mathrm{L} > (d - k). This property ensures that h\bfitx (\bfA , \cdot )\widehat \in L1(\BbbR d - k). Combining (A.7)--(A.9),
implies that

(A.10) (1 + \| \bfA \bfitx \| 2) - n\mathrm{L}\| h\bfitx (\bfA , \cdot )\widehat \| L1 < \infty .

Since this bound is uniform in \bfitx \in \BbbR d and \bfA \in Vd - k(\BbbR d) and the inverse Fourier transform
F - 1

d - k : L1(\BbbR d - k) \rightarrow C0(\BbbR d - k) is a bounded operator (Riemann--Lebesgue lemma), we have
that

sup
\bfitx \in \BbbR d

(\bfA ,\bfitt )\in \Xi k

| h\bfitx (\bfA , \bfitt )| (1 + \| \bfA \bfitx \| 2) - n\mathrm{L} <\infty (A.11)

with the property that h\bfitx \in C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k), due to the isotropic symmetry of the k-plane transform.
Finally, if we write

\bfA \bfitx =

\left[   \bfitalpha T
1\bfitx 
...

\bfitalpha T
d - k\bfitx 

\right]   ,(A.12)

where \bfitalpha n is the nth row of \bfA , then we have that

\| \bfA \bfitx \| 2 =
\sqrt{} 

(\bfitalpha T
1\bfitx )

2 + \cdot \cdot \cdot + (\bfitalpha T
d - k\bfitx )

2 \leq | \bfitalpha T
1\bfitx | + \cdot \cdot \cdot + | \bfitalpha T

d - k\bfitx | \leq (d - k)\| \bfitx \| 2.(A.13)

This results in

sup
\bfitx \in \BbbR d

(\bfA ,\bfitt )\in \Xi k

| h\bfitx (\bfA , \bfitt )| (1 + \| \bfitx \| 2) - n\mathrm{L} <\infty .(A.14)

This bound implies that the operator is actually well-defined on the larger space L1
n\mathrm{L}
(\BbbR d) \supset 

L\ast \bigl( \scrS (\BbbR d)
\bigr) 
. In fact, since h\bfitx \in C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) we have for any f \in L1

n\mathrm{L}
(\BbbR d) that

L\dagger \ast 
Rk

\{ f\} =
\int 
\BbbR d

f(\bfitx )h\bfitx (\cdot )d\bfitx \in C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k).(A.15)

This, combined with (A.14), ensures that the operator

L\dagger \ast 
Rk

: (L1
n\mathrm{L}
(\BbbR d),\| \cdot \| L1

n\mathrm{L}
)\rightarrow (C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k),\| \cdot \| L\infty )(A.16)
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130 RAHUL PARHI AND MICHAEL UNSER

is continuous and, subsequently, that its adjoint

(L\dagger \ast 
Rk

)\ast =L\dagger 
Rk

= (Id - P\scrP n\mathrm{L}
(\BbbR d))L

 - 1 R\ast 
k : (\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k),\| \cdot \| \scrM )\rightarrow (L\infty 

 - n\mathrm{L}
(\BbbR d),\| \cdot \| L\infty 

 - n\mathrm{L}
)(A.17)

is also continuous.
We now prove the right-inverse property (3.5). Recall that L\ast  - 1L\ast = Id on \scrS (\BbbR d). Thus,

by duality, we have the identity

LL - 1 = Id on \scrS \prime (\BbbR d).(A.18)

Since \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) continuously embeds into \scrS \prime 
k (Proposition 2.7), given u \in \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k), we have

that

LRk
L\dagger 

Rk
\{ u\} =Kd - k Rk L(Id - P\scrP n\mathrm{L}

(\BbbR d))L
 - 1 R\ast 

k\{ u\} 

=Kd - k Rk LL - 1 R\ast \{ u\}  - Kd - k Rk L
\Bigl\{ 
P\scrP n\mathrm{L}

(\BbbR d)

\bigl\{ 
L - 1 R\ast 

k\{ u\} 
\bigr\} \Bigr\} 

\underbrace{}  \underbrace{}  
=0

=Kd - k Rk R\ast 
k\{ u\} 

= u,(A.19)

where the last equality follows from Proposition 2.7.
Part (II): The pseudo-left-inverse property (3.6). Observe that, for any f \in L\infty 

 - n\mathrm{L}
(\BbbR d),

L - 1L\{ f\} = f + p(A.20)

for some p\in \scrP n\mathrm{L}
(\BbbR d). Therefore, given f \in \scrM k

\mathrm{L}(\BbbR d)\subset L\infty 
 - n\mathrm{L}

(\BbbR d), we have that

L\dagger 
Rk

LRk
\{ f\} = (Id - P\scrP n\mathrm{L}

(\BbbR d))L
 - 1 R\ast Kd - k Rk L\{ f\} 

= (Id - P\scrP n\mathrm{L}
(\BbbR d))L

 - 1L\{ f\} 
= (Id - P\scrP n\mathrm{L}

(\BbbR d))\{ f + p\} 
= f + p - P\scrP n\mathrm{L}

(\BbbR d))\{ f\}  - P\scrP n\mathrm{L}
(\BbbR d))\{ p\} \underbrace{}  \underbrace{}  
=p

= (Id - P\scrP n\mathrm{L}
(\BbbR d))\{ f\} .(A.21)

Part (III): The form (3.8), stability (3.9), and continuity (3.10) of the kernel. From (A.17)
we immediately see that the kernel takes the form

g\bfA ,\bfitt (\bfitx ) = \rho \mathrm{L}(\bfA \bfitx  - \bfitt ) - 
\sum 

| \bfitn | \leq n\mathrm{L}

\langle m\ast 
\bfitn , \rho \mathrm{L}(\bfA (\cdot ) - \bfitt )\rangle m\bfitn (\bfitx ),(A.22)

where \langle m\ast 
\bfitn , \rho \mathrm{L}(\bfA (\cdot ) - \bfitt )\rangle is well-defined sincem\ast 

\bfitn \in \scrS (\BbbR d). Next, we note that the kernel of L\dagger 
Rk

is the ``transpose"" of the kernel of L\dagger \ast 
Rk

. Consequently, we have the equality g\bfA ,\bfitt (\bfitx ) = h\bfitx (\bfA , \bfitt ).
Therefore, (A.14) is equivalent to the stability bound

sup
\bfitx \in \BbbR d

(\bfA ,\bfitt )\in \Xi k

| g\bfA ,\bfitt (\bfitx )| (1 + \| \bfitx \| 2) - n\mathrm{L} <\infty .(A.23)

Finally, in Part (I) of the proof we showed that h\bfitx \in C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k), which proves (3.10).
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FUNCTION-SPACE OPTIMALITY OF NEURAL ARCHITECTURES 131

Appendix B. Proof of Theorem \bfthree .\bfseven .

Proof.
1. From (3.5) in Theorem 3.6, we readily deduce that

L\dagger 
Rk

:\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\rightarrow \scrV ,
LRk

: \scrV \rightarrow \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)(B.1)

are continuous bijections. Therefore, if we equip \scrV with the norm in (3.12), \scrV is
isometrically isomorphic to \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k).

2. To check that the sum is direct, we must verify that \scrV \cap \scrP n\mathrm{L}
(\BbbR d) = \{ 0\} . By construc-

tion, \scrV \subset \scrM k
\mathrm{L}(\BbbR d). Therefore, by (3.6) in Theorem 3.6,

L\dagger 
Rk

LRk
= Id - P\scrP n\mathrm{L}

(\BbbR d) on \scrV .(B.2)

Yet, from item 1,

L\dagger 
Rk

LRk
= Id on \scrV .(B.3)

Thus, (Id - P\scrP n\mathrm{L}
(\BbbR d))

\bigl( 
\scrM k

\mathrm{L}(\BbbR d)
\bigr) 
= \scrV . Consequently, \scrV and \scrP n\mathrm{L}

(\BbbR d) are complemen-

tary Banach subspaces of \scrM k
\mathrm{L}(\BbbR d) and so \scrV \cap \scrP n\mathrm{L}

(\BbbR d) = \{ 0\} .
3. Since \scrV and \scrP n\mathrm{L}

(\BbbR d) are complementary Banach subspaces of \scrM k
\mathrm{L}(\BbbR d), we can de-

compose any f \in \scrM k
\mathrm{L}(\BbbR d) as

f = (Id - P\scrP n\mathrm{L}
(\BbbR d))\{ f\} +P\scrP n\mathrm{L}

(\BbbR d)\{ f\} 

=L\dagger 
Rk

LRk
\{ f\} +P\scrP n\mathrm{L}

(\BbbR d)\{ f\} 

=L\dagger 
Rk

\{ u\} + p,(B.4)

where the second line follows from (3.6) in Theorem 3.6. Therefore, we can equip
\scrM k

\mathrm{L}(\BbbR d) with the composite norm

\| f\| \scrM k
\mathrm{L}
:= \| L\dagger 

Rk
\{ u\} \| \scrV + \| p\| \scrP n\mathrm{L}

= \| L\dagger 
Rk

LRk
f\| \scrV + \| P\scrP n\mathrm{L}

(\BbbR d) f\| \scrP n\mathrm{L}

= \| LRk
L\dagger 

Rk\underbrace{}  \underbrace{}  
=\mathrm{I}\mathrm{d}

LRk
f\| \scrM + \| P\scrP n\mathrm{L}

(\BbbR d) f\| \scrP n\mathrm{L}

= \| LRk
f\| \scrM + \| P\scrP n\mathrm{L}

(\BbbR d) f\| \scrP n\mathrm{L}
.(B.5)

This norm is an isometric isomorphism with \scrV \times \scrP n\mathrm{L}
(\BbbR d) by design and thus an

isometric isomorphism with \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\times \scrP n\mathrm{L}
(\BbbR d) by item 1.

4. We first note that, in order to equip a Banach space with a weak\ast topology, it must
be identifiable as the dual of some primary Banach space.
Next, notice that

\langle m\bfitn , f\rangle = \langle m\bfitn ,L
\ast \varphi \rangle = \langle Lm\bfitn ,\varphi \rangle = \langle 0,\varphi \rangle = 0(B.6)

for all f = L\ast \varphi \in L\ast \bigl( \scrS (\BbbR d)
\bigr) 
with \varphi \in \scrS (\BbbR d) and | \bfitn | \leq n\mathrm{L}, where we took advantage

of the null space property of L (Remark 3.2). Therefore, P\ast 
\scrP n\mathrm{L}

(\BbbR d)\{ f\} = 0 for all

f \in L\ast \bigl( \scrS (\BbbR d)
\bigr) 
.
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132 RAHUL PARHI AND MICHAEL UNSER

\scrV \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)

\scrU C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)

\mathrm{L}Rk

\mathrm{L}\dagger 
Rk

\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}

\mathrm{L}\dagger \ast 
Rk

\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l}

\mathrm{L}\ast 
Rk

Figure 1. Relationships between the function spaces.

This shows that the operator L\ast 
Rk

(which, the reader can check, maps \scrS k \rightarrow L\ast \bigl( \scrS (\BbbR d)
\bigr) 
)

is such that

L\dagger \ast 
Rk

L\ast 
Rk

\{ \psi \} =Rk L
 - 1\ast (Id - P\ast 

\scrP n\mathrm{L}
(\BbbR d))L

\ast R\ast 
kKd - k\{ \psi \} \underbrace{}  \underbrace{}  
\in \scrS (\BbbR d)

=Rk L
 - 1\ast L\ast R\ast 

kKd - k\{ \psi \} 
=Rk R\ast 

kKd - k\{ \psi \} 
=\psi (B.7)

for all \psi \in \scrS k. Thus, L
\dagger \ast 
Rk

is a left-inverse of L\ast 
Rk

. This implies that the normed space

(\scrS k,\| \cdot \| L\infty ) is (isometrically) isomorphic to the normed space (L\ast \bigl( \scrS (\BbbR d)
\bigr) 
,\| \cdot \| \scrU ) with

\| u\| \scrU := \| L\dagger \ast 
Rk

\{ u\} \| L\infty . Recall that C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) = (\scrS k,\| \cdot \| L\infty ) from (2.20) and define

the Banach space \scrU := (L\ast (\scrS (\BbbR d)) ,\| \cdot \| \scrU ). We can now invoke the bounded linear
transformation theorem [49, Theorem I.7, p. 9] on both L\dagger \ast 

Rk
and L\ast 

Rk
to find that

these operators have the continuous extensions

L\dagger \ast 
Rk

: \scrU \rightarrow C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k),

L\ast 
Rk

:C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\rightarrow \scrU ,(B.8)

which establishes that \scrU and C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) are (isometrically) isomorphic Banach spaces.
From item 3, we know that\scrM k

\mathrm{L}(\BbbR d) is isometrically isomorphic to\scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\times \scrP n\mathrm{L}
(\BbbR d).

Since \scrM \mathrm{i}\mathrm{s}\mathrm{o}(\Xi k) = (C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k))
\prime (see (2.19)) and \scrP n\mathrm{L}

(\BbbR d) =
\bigl( 
\scrP n\mathrm{L}

(\BbbR d)
\bigr) \prime \prime 

(since \scrP n\mathrm{L}
(\BbbR d)

is finite-dimensional and hence reflexive), we see that there is a predual of \scrM k
\mathrm{L}(\BbbR d)

that is isometrically isomorphic to C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k)\times 
\bigl( 
\scrP n\mathrm{L}

(\BbbR d)
\bigr) \prime 
.

From (B.8) and item 1, we have the diagram in Figure 1. Therein, we see that \scrV = \scrU \prime 

and so \scrX = \scrU \oplus 
\bigl( 
\scrP n\mathrm{L}

(\BbbR d)
\bigr) \prime 

is such that \scrX \prime = \scrM k
\mathrm{L}(\BbbR d). To complete the proof, we

need to establish that \delta (\cdot  - \bfitx 0)\in \scrU \oplus 
\bigl( 
\scrP n\mathrm{L}

(\BbbR d)
\bigr) \prime 

[49, Theorem IV.20, p. 114]. Clearly,

\delta (\cdot  - \bfitx 0) \in 
\bigl( 
\scrP n\mathrm{L}

(\BbbR d)
\bigr) \prime 
. Therefore, we only need to check that \delta (\cdot  - \bfitx 0) \in \scrU . This is

equivalent to L\dagger \ast 
Rk

\{ \delta (\cdot  - \bfitx 0)\} \in C0,\mathrm{i}\mathrm{s}\mathrm{o}(\Xi k). Since L\dagger \ast 
Rk

\{ \delta (\cdot  - \bfitx 0)\} (\bfA , \bfitt ) = g\bfA ,\bfitt (\bfitx 0), the
result follows from (3.10) in Theorem 3.6.
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