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What is a representer theorem?

A representer theorem designates a finite-dimensional
parametric formulation of solutions to a learning problem posed
in a possibly infinite-dimensional space, ideally being a linear
combination from some dictionary of atoms.
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Classical representer theorems

® First studied in the context of smoothing splines in H*(R).
— Kimeldorf & Wahba (1970, 1971)

® | ater studied in the general setting of reproducing kernel
Hilbert spaces.
= Wahba (1990)

Classical representer theorems

Let H be a reproducing kernel Hilbert space with reproducing kernel
k(-,-) and consider the scattered data {(z,,y,)}"_,. Then,

N
i 14 n)s Yn A , A>0, 1
P 2 (f(@n); yn) + Allflly (1)
admits a solution f* of the form f*(x Zan T, Ty).

= can simply optimize over {Ozn}n:1 to soIve (1).
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Modern representer theorems

Moving beyond Hilbert spaces:

® Recently, the term “representer theorem” started being used for
more general problems about convex regularization.
— Unser et al. (2017) — Banach spaces
— Boyer et al. (2019) — locally convex spaces
= Bredies & Carioni (2020) — locally convex spaces

® Reproducing Kernel Banach Spaces
— Zhang et al. (2009)
—  Xu & Ye (2019)

® Many classical results in Banach spaces
— ZuhovickiT (1948) — Radon measure recovery
— Fisher & Jerome (1975) — Radon measure recovery, L' splines
= Mammen & van de Geer (1997) — Locally adaptive regression

splines

4/18



Neural network representer theorem

Is there a representer theorem for (single-hidden layer) neural
networks?

Answer

Yes! But in a non-Hilbertian Banach space.
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Neural network representer theorem

Theorem (P. & Nowak, 2020)

There is a family of Banach spaces F,,, and family of seminorms
[l such that for any scattered data {(n, yn)}ﬁle C R4 xR,
there exists a solution f* to

N
i ‘ A A>0 2
i 2 (f(®n), yn) + Al fll gy, A >0, (2)
of the form
K
f*(@) = vk pm(wim —bg) + c(x), K <N.
k=1

= can simply optimize over {vj, wy, bk}szl and ¢ to solve (2).
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Neural network representer theorem

* N fllgmy = Ha?Ad_lf%fHM
= % - Radon transform
— A"l — Ramp filter
= 0;" — m partial derivatives in offset variable of Radon domain
= |I-llps = TV norm (in the sense of measures). L' ¢ M C ./,
but M includes distributions such as the Dirac impulse.

o £, = {f:]Rd—HR: Ha{nAd*l%fHM<oo}

* pm = max{0, -} /(m — 1)! - truncated power functions
—> m = 2 corresponds to RelLU networks.

® cis a "generalized bias" term, i.e., a polynomial of degree < m.

7/18



Why the Radon transform?

® The Radon transform computes integrals over hyperplanes.

— @0 = [ f@)ieTe 1) de

R
—> Radon domain parameterized by a direction ~ and an offset ¢

® Single-hidden layer neural networks are superpositions of ridge

functions.

Z2
T

® A neuron is a mapping of the form « — p(w'x — b).
— Parameterized by a direction w and an offset b.
= The Radon transform provides a convenient way to “extract”
the direction and offset from a neuron.
= OPAT R pm(wT(+) = b)} = SRadon(- — (w, ).
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Radon transform and ridge functions

pre-1950s: Superpositions of plane waves are solutions to many
PDEs, e.g., the wave equation.
= Plane waves are just ridge functions.
—> Radon domain analysis is useful.
1970s: Seminal paper on computerized tomography from
Logan & Shepp (1975).
— Coined the term “ridge function”.

1990s: Multiscale system referred to as ridgelets proposed by
Murata (1996); Rubin (1998); Candes (1998, 1999).
—> Ridglet transform is just a one-dimensional
wavelet transform in the Radon domain.
2020: Ongie et al. (2020) show that ||97AY' 2 ]| ,
captures the Euclidean norm of the weights in an
infinite-width ReLU network.

— Provides insight into what functions can be
represented by infinite-width ReLU networks.
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Remarks

® Much of past work has focused on characterizing what
functions can be approximated or represented by neural
networks.
— Not practically interesting.

® The utility of our representer theorem says what happens when
one trains a neural network on data.
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Finite-dimensional neural network training

® The utility of RKHS representer theorems is that the
infinite-dimensional optimizations can be recast as
finite-dimensional optimizations.

® Also applies to our neural network representer theorem.
K

= Let fo(x) = Z vk pm (Wi T — b)) + c(x).
k=1

K
— oA % fol| = D loelllwlly
k=1
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Finite-dimensional neural network training

® Can consider the finite-dimensional optimization
N K
. 1
min Zlﬁ(fe(wn), Yn) + A kzllvkl w3’
n= —

= A kind of path-norm regularization (Neyshabur et al., 2015).

® Which is equivalent to

N K
min Y U fo(@n)yn) + A Y [onl* + i3
n=1 k=1

= A kind of weight decay regularization (Krogh & Hertz, 1992).
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Takeaway messages

® Representer theorems are much more general than the
well-known RKHS setting.

® Nonparametric learning problems with
|0 A4t 22{-}||  ,-norm regularization have sparse, atomic
solutions which are single-hidden layer neural networks.

o HE){”Ad_l ,@{}HM is equivalent to neural network path-norms.

o H@["Ad_l %{-}HM—norm regularization is equivalent to forms
of weight decay.

® Regularizers are “matched” to the activation function.
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Thank You

Questions?

https://arxiv.org/abs/2006.05626
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