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UW-Madison is (was?) the mecca of splines

® Isaac Schoenberg (1903-1990) invented the spline in the
1940s.

— Was at UW-Madison from 1966-1990.

e Carl de Boor wrote many influential papers and books about
approximation theory and numerical algorithms with splines.
= Was at UW-Madison from 1972-2003.

® Grace Wahba wrote many influential papers about smoothing
noisy data with splines, making splines popular in statistics.
—> Was at UW-Madison from 1967-2018.

® Amos Ron has written many influential papers about
approximation theory with splines.

— Has been at UW-Madison since 1988.

Remark

People seem to have forgotten about splines...
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Reconstructing functions from measurements

A fundamental problem in science and engineering is to
reconstruct a function f : R? — R from measurements.

yn:<hn7f>+5n7n:1,..‘,N

H{f} = ((h1, f),..., (hn, f)) € RN symbolizes the linear
measurement process.

e = (e1,...,en) € RY are perturbation or noise terms,
typically zero-mean random variables.

* y=(y1,...,yn) € RY denotes the (possibly noisy) data.

This is an ill-posed inverse problem.
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How do we solve this problem?

¢ Solving this problem requires choosing/designing a model for

your functions.
— Assume that f € X/, where X’ is some Banach space.
— It will be useful to think of X’ as a dual space.

® To remedy the ill-posed nature of the reconstruction problem, a
minimum-energy requirement is often imposed to regularize
the solution

i st (hn f) =yn,n=1,...,N.
min [fllx st o f) = yn, m

or, if the data is noisy,

N
. 2
min Z’y’ﬂ - <hn7f>‘ + )\HfHI_;Jt'/u
fex’
n=1
where A > 0 and 1 < p < o0.
= |||l 4+ is @ norm or seminorm that defines X’ and is often

referred to as a regularizer.
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Representer theorems

i 2 .t. h’TL? :’I’L7 :17...7N.
min [[fllx st Ak f) = yn,

® Representer theorems provide a parametric
representation—ideally, a finite linear expansion in terms of
some “basis” functions or atoms—that span the solution set.
— Representer theorems provide a way to recast
infinite-dimensional optimization problems as
finite-dimensional optimization problems, providing a first step
to designing a numerical method to solve the
infinite-dimensional problem.
® This variational formulation for function reconstruction
captures many classical methods such as smoothing splines,
locally adaptive splines, and wavelet methods.
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(Cubic) smoothing splines

— D2
o) Dyn > AID? f1ls

® Measurements are point evaluations h,, = §(- — z,,) for some
N

{zn},—1 CR.

The solution to this problem is unique and a cubic spline

xHka(x—xn)i—Fclx—Fco

n=1

The number of knots is equal to the number of data.

The atoms of the solution are (- — z,,)3..
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(Cubic) smoothing splines
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(Linear) locally adaptive splines

i o — f(zn)2 + ATV(D
P Z!y (@) + ATV (D f)

® Measurements are point evaluations h,, = (- — x,,) for some
N

{zn},—1 CR.

There exists a solution to this problem that is a linear spline

K

x ka (x —tp)y +c1r+co
k=1

The number of knots is K < N.

® The atoms of the solution are (- — )+
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(Linear) locally adaptive splines
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Wavelet methods

® \Wavelet atoms are translates and dilates of a mother wavelet
function v

{in(@) = 2772920 — )}

k€T

® The Daubechies wavelets provide orthobases for L?(R).
1/q

 Wfllsy, = | 2 la £,
J
® Wavelet characterizations of B,  (R) essentially replace A;

with

Pif = (fr i) ik

keZ
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(Db3) wavelet methods

o Z!yn— *+ Allf Nz,

feBs

|| g2 is the db3 wavelet dependent norm.
B?, p

Measurements are point evaluations h,, = 6(- — x,,) for some
N

{:UTL}n:l CR.

There exists a solution to this problem that can be written in

terms of a finite number of wavelet functions

T Z ¢k k()

(j,k)eT

|Z| depends on .

The atoms of the solution are v ;.
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(Db3) wavelet methods
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Comparing these methods

/\/MM /\/\ | A /\N' |

/\ /\ MMMH\ /\

/ \ LA
VO

* The data-generating function is not in H?(R)!

— Choosing the right function space is crucial in getting accurate
reconstructions.
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Variational formulation for function reconstruction

® Neural networks are outperforming and replacing classical
methods in many reconstruction tasks.

® Unlike classical methods, neural networks are not
well-understood mathematically.

— Classical methods assume regularity of the underlying function
and design a procedure to optimally reconstruct functions with
that regularity.

— Neural network methods do not aim assume any kind of
regularity a priori, but outperform classical methods in practice.

® |t turns out that this variational formulation also captures
neural networks. (P. and Nowak 2020, 2021a,b,c)

i ’ S.t. h, = 5 :1,...,N.
min, £l » (s f) = Yny 10

— X' is a new, not a classically studied function space.
— X' is a new kind of BV space that captures the regularity
properties that neural networks are intrinsically optimal for.
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Spatial inhomogenity and sparsity

® Many real-world objects (signals, images, functions, etc.) are
spatially inhomogeneous or exhibit sparsity.
— Spatial inhomogeneity is modeled via Besov spaces with p < 2.
— Sparsity is modeled via Besov spaces with p = 1 or with
BV-type spaces.

® e.g., BV is a common model for natural images.

1 1
Bi1(2) CBV(Q) C By ()
® These kinds of spaces are interesting from an analysis
perspective since they are non-reflexive.

® The spaces related to neural networks are non-reflexive.
— Before understanding neural networks, we first need to

understand (locally adaptive) splines. 1651



What are splines?

® A polynomial spline of degree m — 1 is a piecewise polynomial
function that is C™ 2.

® The locations of the discontinuities of the (m — 1)th derivative
are referred to as the knots of the spline.

e A function f is a polynomial spline of degree m — 1 if

K
Dmfzzvk(s('*tk% \\/\\\/

k=1

where m is the order of the spline and {tk}szl are the knots.
® Therefore, every spline can be written as

K m—1
T kapm(m —tr) + Z cn
k=1 n=0

where py,(z) = 2”1 /(m — 1)! is a Green’s function of D™
=  ppm is the mth-order truncated power function.
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Notation

® For f:R—R, let TV(f)= sup Z|f Zn) — f(xn_1)|.

1< <£EN

* M(R) C ./(R) be the space of finite Radon measures on R.

lull o = sup (u,p)
»€Ch(R)
llell =1

® ||| o4 is the total variation norm in the sense of measures.

* TV(f) = ID fllm
® Let TV™(f) = TV(D™ ! f) = | D™ f|| », denote the
mth-order total variation of f.
® |et
BV"R)={f:R—=R: TV"(f) < oo}
denote the space of functions of mth-order BV on R.

= This is a non-reflexive Banach space.
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Representer theorem for locally adaptive splines

Theorem (Fisher and Jerome 1975)

Consider the variational problem

V= argmin [|[D™ f|\, st. (hn,f)=yn,n=1,...,N,
fEBV™(R)

where h,, : BV™"(R) — R is weak* continuous, i.e., hy, lies in the
predual of BV (R). Then, the solution set V is nonempty, convex,

and weak® compact. Moreover, the extreme points of V are
mth-order splines of the form

K m—1
s(x) = ka Pm(T — tx) + Z cpr”, K <N.
k=1 n=0

® These solutions are sparse: [|[D™ s||,, = [|v|; and K < N.

e The knot locations {f;}1_, are adaptive. o5
5



Proof sketch

Step 1: Understanding the Banach structure of BV™(R).
® BV™(R) is defined by the seminorm f — [[D™ f/ ,,

® The null space of this seminorm is the space of polynomials of
degree < m, denoted P,,_1(R).

® We can equip P,—1(R) with a biorthogonal system so that
every ¢ € Pp,—1(R) admits a unique representation

m
= {6k )k,
k=1

where {py}, is a basis for Pp,_1(R) and ¢y, € Pm 1(R)
such that (¢x,pn) = Ok, e.g., choose py(z) = (k 1)! and

r(z) = (~1)F 1 D(a).
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Proof sketch (cont.)

® Consider the operator D;m whose Schwartz kernel is given by

m

9o(@,y) = pm(x —y) = >_ (S, pm(- — y))pi()

k=1
= pm(z —y) — projpmfl(R){Pm(‘ —y)}()

® For all p € M(R), this operator satisfies
D™D ™ p=p
¢(Dy," p) =0

where ¢(f) = ((¢1, f);- -, (¢m

)

»f)).
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Proof sketch (cont.)

® Define
BVJ(R) = {f € BV"(R) : ¢(f) = 0} = BV"(R)/Py,_1(R).

Therefore, BV"(R) = BV (R) & Pp—1(R).

® Since we factored out the null space, BVy(R) is a Banach
space when equipped with the norm f — ||D™ f]| .

* Consider the mapping D™ : BV (R) — M(R) that maps
f = pu=D"f. Since [|[D™ f| = [|t]| o4, this map is norm
preserving and it is invertible with inverse given by

D,™ : M(R) — BV (R).

— ie, BVY(R) 2 M(R).
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Proof sketch (cont.)

¢ Every f € BV™(R) admits the direct-sum decomposition
f=D,"n+q,

where 1= D™ f € M(R) and ¢ = projp, () .f € Pm-1(R).
® When equipped with the norm

1f gy @y = D™ Fllpg + 1002,

BV™(R) is a Banach space, in particular, a non-reflexive
Banach space (since M(R) is a non-reflexive Banach space).

— eg. [ flpva = TV + £(0)].
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Proof sketch (cont.)

Step 2: Transform the variational problem over BV™(R) into a
variational problem over M(R).

® Recall the variational problem

min D™ st. H =y e RV,
min 1D flLy =y

® From the direct-sum decomposition f = D;m W+ q, this
problem is equivalent to

min st. HD™u=y—HqgecRY,
in IIMIIM o n=y—Hg
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Proof sketch (cont.)

® Classical problem known as Radon measure recovery:

Vi=argmin [|[pl|, st. Ap =z,
rEM(R)

where A : M(R) — R is weak* continuous and linear.

= It is well-known (Fisher and Jerome 1975; Zuhovickii 1948) that
the solution set V is nonempty, convex, and weak* compact,
and that the extreme points take the form

M=

Vk 6( — tk),
k=1

where iy e R, k=1,..., K, and K < N.
— weak™ continuity of the measurement operator plays a crucial
role in proving that solutions exist.
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Proof sketch (cont.)

® Therefore, the solution set to

D™ t. H{f} =y eRV.
fegy;} ID™ fllpg s {ft=vy

nonempty, convex, and weak® compact. Moreover, the extreme
points are mth-order splines of the form

K m—1
Z'Ukpmx_tk +ch ,
k=1 n=0
where K < N.
— Plug in the solution to the Radon measure recovery problem
into the direct-sum decomposition. |
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What's going on?

min D™ st. H =y e RV,
min D" FlL =y

® The extreme points of the solution set are written as a
superposition of extreme points of the the unit ball associated
to f+— |[D™ f|| ( (in the quotient space BV"™(R)/Py,,—1(R)).

— We showed that BVY(R) 2 BV™(R)/P,,_1(R) is
isometrically isomorphic to M(R).

— It is well-known that the extreme points of the unit ball of
M(R) take the form §(- — o), to € R.

== Therefore, the extreme points of BV (R) take the form

D" {(- —to)} = g¢ (-, t0)
= pm(- —to) = projp, @y {Pm(- —to)}
€ [pm(’ 7750)]

= This unit ball has an interesting geometry.
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A general representer theorem

® Let (X, X’) be a dual pair of Banach spaces.

® lLet hy,...,hny € X be a set of measurement functionals.

o let H: X' = RN : fs ((h1, f), ..., (hn, f)) be a weak*
continuous linear measurement operator.

Then, for any fixed y € R, the solution set to
argmin [|flly, st H{f} =y
fex’

is nonempty, convex, and weak* compact, and its extreme points

take the form
K

> vkug,

k=1
where K < N and u;, € Ext{f € X’ : || f|l, < 1}.
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A general representer theorem

Variants of this result have been proven by a number of authors:

¢ Claire Boyer et al. (2019). "On representer theorems and
convex regularization”. In: SIAM Journal on Optimization
29.2, pp. 1260-1281

e Kristian Bredies and Marcello Carioni (2020). “Sparsity of
solutions for variational inverse problems with
finite-dimensional data”. In: Calculus of Variations and
Partial Differential Equations 59.1, pp. 1-26

® Michael Unser (2021). "A unifying representer theorem for
inverse problems and machine learning”. In: Foundations of
Computational Mathematics 21.4, pp. 941-960
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What is a neural network?

e Compositions of affine mappings and nonlinear mappings.

* A neural network f : R% — R?+1 can be written as

2 = .
2 = p(AOL) _p®) p=1,... L,
Flz) = AU+ L) _ p(L+D),

— L € N is the number of hidden layers.

— AW® ¢ R¥xdi-1 gre the weights of the neural network.

— b € R% are the biases of the neural network.

= p:R — R is the activation function; p applies p entrywise.

When L = 1, the neural network is shallow and when L > 1, the
neural network is deep.
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What is a neural network?

® Today we will focus on shallow neural networks with scalar
outputs.

¢ These are functions f : R? — R that can be written as

K
f@)=v"p(Wz —b) = > v p(wfm —by),
k=1
where v € R, w, € R?, and by, € R.

® A common choice for p is the truncated linear function
p(x) = x4, which we previously defined as ps.

® The atoms of a shallow neural network are functions of the
form p(w] (-) — by) and are often referred to as neurons.

Prove a representer theorem for neural networks.
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Observations

® Recall the variational problem for locally adaptive splines

f]_g,r\lfl}nl D™ f”/\/( st. {(hn,f)=yn,n=1,...,N.

® The solution set is completely characterized by mth-order
splines of the form

m—1

X
.'EHZ’Ukpmx—tk +ch y pm ):ﬁ

® The operator D™ is a sparsifying transform to the atom
pm/(+ — tx) since it extracts the parameter of the atom

D™ pu(- — i) = 6(- — tx).

® In the proof of the representer theorem we were able to
construct D;m, a bounded, right inverse of D™,
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Observations

® The atoms of a neural network take the form

2 plwiw —by), plz) = oy

® Univariate neural networks with p( ) = x4 are linear splines
K
— DQ{ZUkp(wk( —bk} ka|wk|(5 — b /wy).
k=1

® The parameters of an atom are wg € R? and by € R.
= WLOG, suppose wy € S* ' = {v e R : |||, =1}.

bo
= plwgz —bo) = ||[woll,p [H ol ] o [|lwol|
2 2
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Question

Does there exist a sparsifying transform R such that

R p(wg (+) — bo) = 8(- — (wo, bo)),

where (wp, by) € S¢! x R?

Answer

Yes, and it involves second-order differentiation and the Radon
transform.

34/51



The Radon transform

* For a sufficiently nice function f : R? — R, the Radon
transform is given by

RLFHC / /,

— (€ Pisa (d— 1)-dimensional hyperplane in R
® Every hyperplane can be defined as the solution set to the
equation y'x = ¢, where (v,t) € ST! x R.
= (9,t) and (—~, —t) are associated to the same hyperplane.
® We can identify Z{f} with an even function on S*~! x R
given by
wY = [ fla)dsia)
~yTx=t
® The Radon transform as an integral operator whose Schwartz
kernel is given by the distribution

k(z, (v,1)) = 6(y T — t)
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Inverting the dual Radon transform

* For a sufficiently nice function ® : S ! x R — R, the dual
Radon transform is given by

(B} () = / B(v,"z) do(7)

§d-1

* Given sufficiently nice ® : S%~! x R — R such that
(D(‘th) = Q)(__’Ya__t%
202m) 10 = AL R R ® = % R N1 D,
d—1
where A1 = (—9%) 77 .

— In CT imaging parlance, A% is known as the backprojection
filter (or ramp filter).
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The sparsifying transform

Lemma (Ongie et al., 2020, P. and Nowak, 2021)

Consider 7y, 1) = p(wd (+) — bo), where p(z) = x4. Then,

(- — (wo, bo)) + 6(- + (wo, bo))
2

ca AV B A Ty o) =

. 1
where Cq ‘= W
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Proof

® Notice that
AT (g p0) = A p(wg (+) = bo) = 6(wg () — bo),

which is the Schwartz kernel of the Radon transform.
® Next, consider the even test function .

® Therefore,
Cca(A" B AT (g 0)s V) = CalAT (wg,00), Z A TP)
= (Cd RB X Adilw)(’u}o, bo)
= 1p(wo, bo)
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What'’s going on?

® Neural network atom

= p(wg () = bo), (wo,bo) € 7 x R .

e Laplacian of atom
= A{p(wg () =bo)} = 8w () = bo)

¢ Filtered Radon transform of Laplacian of atom
— (A Z A){p(wg (-) = bo) } (7, 1) = 6((, ) — (wo, bo)).
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Other activation functions

® Due to the intertwining relations of the Laplacian and the
Radon transform, we can write

cgN VBN =g PN %

® The operator R,,, = ¢4 0" A1 % sparsifies atoms of the form
(w00 () — o), where prn(x) = 2 /(m — 1)
—> In particular,

Ry pn (20§ (-) ) = 2L (Lol 2 DO (0. o)
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Higher-order BV spaces in the Radon domain

® Recall
BV*"(R)={f:R—R: D" fe M(R)}
Consider the space
ZBV™(RY) =

cgOMATY R f e M(STTT X R),
. ™d .
PR R ossup |f(@)](1+ [[2]l,) ™Y < o0

xR

® When d = 1, one can show that Z BV (R) = BV"(R).
— Define ZTV™(f) = cq|| 0" AT R f|| (.
= Whend=1, ZTV"(f) =TV™(f).
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Representer theorem for neural networks

Theorem (P. and Nowak, 2021)

Consider the variational problem

argmin g P A B fllpe site (g f) = gy n=1,..., N,
fEZBV™(RY)

where h,, : ZBV™(R?) — R is weak* continuous, i.e., hy, lies in
the predual of Z BV™(R?). Then, the solution set is nonempty,
convex, and weak® compact. Moreover, the extreme points are
shallow neural networks of the

K
s(@) =Y vppm(wie —by) +c(x), K <N,
k=1

where ¢ € P(R?) is a polynomial of degree < m.
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Representer theorem for neural networks

® Proof is similar to the proof for locally adaptive splines.
® Similar results hold for deep neural networks. (p. and Nowak 2021¢)

— Define ZBV™(R%;RP) and consider compositions of such
functions.
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What are % BV"'-spaces?

* Let QO C R? be a bounded domain with nice boundary (e.g.,
Lipschitz). Then,

ZBV™(Q) = {f: Q> R: 3ge ZBV"(RY)s.t.g|, = f}

® When d =1, Z BV™(Q2) = BV™"(Q).

= B () CBV™(Q) C BI"(Q)
= The best K-term approximation rate for f € BV (Q) is

If = frllpo) S K™

and is achieved by keeping the K largest Daubechies wavelet
coefficients or with free knot spline approximation.

® When d > 1,
— WiHml(Q) c ZBV™(Q). (P. and Nowak 2021b)
—> We also know about the best approximation rates for
ZBV™(Q).
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Approximation properties of Z BV ((2)

Suppose Q = {z e R? : ||z|, < 1}.
® Every f € ZBV™(Q) admits an integral representation

f(x) = / P — b) duw, b) + c(),
Sd-1x[-1,1]

where pp,(z) = 277/ (m = 1)!, p € M(S*! x [~1,1]), and
c¢(+) is a polynomial of degree < m.
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Dimension-free approximation rates

® Let D :={g} p be a dictionary of atoms such that
g € L*(Q). If D C L%(Q) is compact, then there exists

K

fK = okgr, gr€D
k=1

| semacn =5

— This rate does not grow with the input dimension d.

such that

N|=

S K-
L2(9)

— Gilles Pisier (1981). “Remarques sur un résultat non publié de B.

Maurey".
® In our problem, D = {pp,(w'(-) — b)}(w,b)eSd—lx[fl,l]'
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Approximation properties of Z BV ((2)

® Given f € ZBV™(Q), there exists

K
fx(x) = Z v pm (Wi T — by) + c(x)
k=1
such that
_1_2m-—1 _1
If = Fllp2@) S K727 20 S K72,
This is the best rate. (Bach 2017; P. and Nowak 2021b; Siegel and Xu 2021)

® Compare this to the best K-term approximation rates in
H™[0,1]%, which scales as

1f = frllr2ppae S K~

and is achieved by truncated Fourier series approximation.
= This rate grows exponentially with the input dimension d.
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Takeaway messages

® The intrinsic function spaces of neural networks are

Z BV -spaces.

— These are not classically studied function spaces. Perhaps
explaining the lack of understanding of neural networks in
practice.

® These spaces are small in the sense of their “dimension-free”
approximation rates compared to classical function spaces, e.g.,
Sobolev spaces.

® When m =1, ZTV(-) .= ZTV!(-) is a new notion of
multivariate total variation, different than TV (f) = ||V f]| »,.

— When m > 1, ZTV™(-) provides a way to defined
higher-order variants of multivariate total variation.
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Open problems

® How do #Z BV -spaces relate to classical spaces, e.g., Besov,
Triebel-Lizorkin, etc.?
— Ridgelet analysis is probably the right tool to answer this

question.

® What other kinds of representer theorems can you get if you
replace Z with a generalized Radon transform in
Cd 8thd_1 X .
= Requires understanding the invertibility of the dual transform.
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