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Classical Formulation of Lévy Processes

Definition (Lévy process)

A stochastic process (.S;):>¢ is called a Lévy process if
1. So = 0 almost surely;

2. Independence of increments: For any 0 <t; < --- < ¢, < o0,
Xy, — Xgyyoor , Xy, — X¢ _, are mutually independent;

3. Stationary increments: For any t1 < tg, Si, — S, =4 Sty —to]
4. Stochastic continuity: For any e > 0 and ¢t > 0

lim P(‘Sﬂ_h — St| > 8) = 0.
h—0

Lévy process are cadlag and tightly linked to infinite divisibility



Examples of Lévy Processes

Brownian motion
JJJ Compound Poisson
Lévy flight

Lévy process are often used to model various components
of signal processing and communication systems

Wiener 1923

Lévy, ca. 1930



Decoupling the Underlying Randomness

Is there a way to decouple the correlation properties of a
Lévy process from its underlying randomness?

Example: Compound Poisson process s(t) (rate A > 0 and jump law Py)

=5

_ v ~ Py 1.1.d.
Ds(t) = $(t) = Y vy 0, . . . .
- {by }. is a Poisson point process with rate A

Innovation

p pm—

The underlying randomness of a compound Poisson process is
completely determined by its innovation process



Innovation-Based Synthesis

277

ka5(_bkz) <

k

D

Integrate the innovation process?

D—l

Recall:

s(0) =0 a.s.

“ 1 + E s




Compound Poisson Process

e SDE formulation —
]
Ds=w s.t. s(0)=0 -
SR _ 2 : o Poisson innovation, or
Innovation: w = Yk 5( bk) Poisson white noise

k

e "'Formal”’ solution

s(t) =Dy w(t) = ka Do {a(- — )} (t)
— ka( t—bk H(—bk))

imposing boundary condition



Brownian Motion and Gaussian White Noise

Brownian motion

w(?)

Gaussian innovation, or
Gaussian white noise

Gaussian white noise does not admit a pointwise representation

w(t) is a random measure, or, P(w e D'(R)) =

1
a random distribution (generalized function) P(w e S'(R)) =1

(Gelfand, 1955)



Innovations Approach to Lévy Processes

/ whitening operator \ L évy

process white noise
\ )Aracteristic functional +

DN 1 Lévy-Khintchine formula

0

Lévy

“Innovation model”
(deterministic) “mixing” operator

mixing = whitening ™"

It Is much easier to study white noise processes
than i1t is to study general random processes.

Bode and Shannon (1950); Kailath (1970s) 10



Generalized Stochastic Processes

Kiyosi 1t Israel Gelfand

MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A
Vol. XXVIII, Mathematics No. 3, 1953.

Stationary random distributions

By

Kiyosi ITH

(Received April 15, 1954)

In the same way as the concept of distributions by L. Schwartz
[11]” was introduced as an extended one of functions, we may define
stationary random distributions as an extension of stationary random
functions viz. stationary processes. Such consideration will enable
us to establish a unified theory of stationary processes, Brownian
motion processes, processes with stationary increments and other

Framework of generalized
stochastic processes

ca. 1950s

Stochastic counterpart to
Schwartz' theory of distributions

1.
Generalized random processes

Dokl. Akad. Nauk SSSR 100 (1955) 853-856. Zbl. 64:111

1. Usually, a random process is defined by probability distributions of random
variables (x(t,),...,x(t,)) for n arbitrary moments of time. However, one can give
many examples of random processes which are important in practice for which
such probability distributions do not exist. An example of such a process is the
white noise that can be obtained, roughly speaking, as a superposition of all
frequencies with random amplitudes; these amplitudes are independent, identically
distributed Gaussian variables. In this note we introduce a description of random
processes that appears to cover all practically important examples. If x(t) is a
random process, then any “linear apparatus” gives us a probability distribution

11



Warm-Up: Classical Probability Theory

X € R% is a random vector with law P x

This means that

X : (Q,F,P)— (RY B(R%)) is measurable.
complete
probability space

The law of X is given by the pushforward measure

Px(A)=(X3P)(4) =P(X1(4)=P{weQ : X(w) € A})
=P(X € A).

The characteristic function of X is given by
Px(¢) =E[X ¢, £eR?

Once you have the characteristic function, you have everything.

12



Bochner’s and Lévy's Theorem

Bochner's Theorem

A function P Is the characteristic function of a random variable

X € R? it and only if P is continuous, positive-definite, and
satisfies P(0) = 1.

Lévy's Continuity Theorem

Let (X,,)nen and X be random variables in R?. The sequence X,
converges in law to X if and only if, for all £ € R?,

Px, (£) > Px(£).

13



Generalized Stochastic Processes

A generalized stochastic process is a random variable
that takes values in the dual of a nuclear space.

Let (M, N) denote a nuclear space and its dual. A generalized
stochastic process s is a random variable, i.e., a measurable map

s: (QF,P)—= (N, B.(N)).

The law of s is the probability measure P, := s3P, which is defined
on B.(N"). The characteristic functional of s is given by

S

Pi(p) = E[ei<5’9">N’><N], e N.

Examples: (R%,R%), (D(R%), D'(RY)), (S(R?), S (R%)), etc.

Once you have the characteristic functional, you have everything.

14



Generalized Stochastic Processes

This formulation allows us to study classical stochastic
processes (s(x)),cra as well as those that do not admit
a pointwise representation such as white noise.

Example (Gaussian Processes)

A generalized stochastic process s that takes values in A/ is called
Gaussian if its characteristic functional is of the form

- 1

P.(¢) = exp (i:(0) = 5u(00) ) 9 €N,

where us(p) = E[(s, ©)| denotes the mean functional and

Ys(1,p2) = E[((s, 1) — ps(91))((; p2) — p1s(p2))] denotes the
covariance functional of the process.

—> Backwards compatible with space-indexed Gaussian processes.

Hida and lkeda (1967); Duttweiler and Kailath (1973)



Is Nuclearity Necessary?

Bochner—Minlos Theorem

A function P is the characteristic function of a stochastic process
s € N/ if and only if P is continuous, positive-definite, and

satisfies P(0) = 1.

Lévy—Fernique Continuity Theorem

Let (s, )nen and s be stochastic processes in A/'. The sequence s,
converges in law to s if and only if, for all o € N,

P, () > P ().

n— oo

16



Classical Lévy Processes: A New Perspective

— I
~

Lévy

process \

Lévy
white noise

e SDE formulation

&
Ds=w st. 5(0)=0 What is the characteristic functional

e “Formal” solution of a Lévy white noise?
-1
s =Dy w

17



Lévy White Noise Characteristic Functional

Theorem (Gelfand and Vilenkin, 1964)

Let s(t) be a Lévy process on R and let w = Ds. Then, w € D'(R)
almost surely and

—exp</f dx), © € D(R),

0.252 .
7€) = ing = T+ [ = 1= ie1 (0 aPy (1)

where

with © € R, 02 > 0, and Py, is a Lévy measure, i.e.,

/ min{1,£2}dPy (1) < 00 and Py ({0}) = 0.

(, 0%, Py/) is called a Lévy triplet and f is a Lévy exponent

18



Examples

e Poisson white noise wpy; on R with rate A and jump law Py

P, (0) = exp (A /R /R (eiW(t) ~ 1) dt dPV(v)>

Duttweiler and Kailath (1973) cf., £ — exp ()\(eiﬁ _ 1))

e Gaussian white noise waauss With unit variance

5 lell7
PwGauss (QO) — eXp < 2L2

Gelfand and Vilenkin (1964)

19



Lévy Process Characteristic Functional

P.(¢) = E[e®?)] e DR) s Z D lw
£ _
<37 S0> — <DO 111], 90>
— <w, D61*¢> Fageot and Humeau (2021)

Given the characteristic functional of the innovation process, you
automatically have the characteristic functional of the original process.

20



A More Abstract Innovation Model

linear | ,
typically assumed to be Lévy

Whltenmg white noise on some locally
operator compact Hausdorff space

stochastic . .
white noise
process
| , linear
generalized Lévy processes ..
mixing
operator
o _ .1 existence of suitable operators
MIXING — Wh|tenmg IS an active area of research

f)s(gp) — i\)w (L_l*gp)

21



Tempered Lévy White Noise

Theorem (Dalang and Humeau, 2017)

Let w be a Lévy white noise on R?, i.e., w € D'(R%) and

Pue) —exp ([ fe@)de), oeDE)
where .
522 |
1€ =ing = 5+ [ & i€l (0 dPy (1)

with Lévy triplet (i, 02, Py). Then, w is tempered (a.s.) if and
only if there exists € > 0 such that

EHV‘g] < oo, V~Py.

P(weS'(RY))=1<P(we DR\ SRY) =0 < supp(P,) C S’ (RY)

22



Fractional Order Processes

DH—I—%S CZ ” Blu and Unser (2007)

W\W T T T T T T T T T
= | | | | | | | | | - | | | | | | | | |
—’\/M_—/\A/\X\\/w w
1 | | 1 | 1 l | l | | | | 1 l ! l |
T T T T T T T 1 T T T 1 T T T I T T
L | | | | | | | | : _ //
I E—— T T | | T T T T T
/—’_//

Gaussian Sparse (generalized Poisson)

S.=H

=H

Gc't

S 1=H

Mandelbrot and Van Ness (1968)



Fractional Order Processes

Gaussian

H=.5 H=.75 H=1.25 H=1.75

Sparse (generalized Poisson)

HE AT,

24



parse Stochastic Processes are Good Models

986 J‘ér'ry Lodriguss and John Martinez

25



Applications to Random Neural Networks

26



Deep Neural Network Architectures

The Evolved Transformer

David So, Quoc Le, Chen Liang Proceedings of the 36th International Conference on Machine

Learning, PMLR 97:5877-5886, 2019.

| Conv 1x1:512 |

| Conv 1x1 : 2048 |

4
[ Layer Norm ]

[ 8 Head Self Attention : 512 ]

)
[ Layer Norm ]

| Sep Conv 9x1 : 256 |

4
[ Layer Norm ]
(R

[Conv 1x1 : 2048 J [ Conv 3x1 : 256 ]

[ Layer Norm ]

[ Gated Linear Unit : 512 ]

i
[ Layer Norm ]
4

\

Google DeepMind 2023-10-26

ConvNets Match Vision Transformers at Scale

Samuel L Smith!, Andrew Brock!, Leonard Berrada! and Soham De!
1Google DeepMind

convl

7x7x512

l;" x 112 x 128
@ convolution+ReLU
@ max pooling

ﬁ'\ fully connected+ReLU

224 x 224 x 64

Very deep convolutional networks for large-scale image recognition
K Simonyan, A Zisserman

In this work we investigate the effect of the convolutional network depth on its accuracy in the
large-scale image recognition setting. Our main contribution is a thorough evaluation of ...

Y% Save Y9 Cite Cited by 112161 Related articles $9

Rectified Linear Unit (ReLU)
ReLU(t) = max{0,t} =t

27



Neural Network Training

parameterized by a vector 8 € RY
of neural network weights

Ny
N <>
N, X387

7,
7

\

k

17/’\»’\1

olx) =c(Wro(Wyr_10(---o(Wix

f‘
/

Neural network training problem for the data {(xn,yn)}, —1-

N

. 2
min > L{yn, fo(xn)) + 5110l

n=1

data fidelity regularization

28



Neural Network Training

N

. A
min E(yn,fe(wn))+§|\9\|§

P
OcR n=1

£(0)

Gradient descent update on 6;

00;

/ randomly!

step size
“learning rate”

H;H_l — (9;5 — T (ag e AH,S) How do we choose 6’?7
6,=0"

Hanson and Pratt (1988, NeurlPS)
Krogh and Hertz (1990, NeurlPS)

29



Random Neural Networks

i

/f
7
S/ Z”

\

\

parameterized by a vector 8 € R
of neural network weights

olx)=c(Wro(Wr_10(---o(Wix

random neural network is a random function.

0

6~ Q

random neural network is a stochastic process.

f9 L))xrcRrd

30



Machine Learning Folklore

Folklore Theorem

The parameters of neural networks trained with GD do not move
far from their initialization.

If we can understand neural networks at initialization,
then we can understand everything!

DEEP NEURAL NETWORKS AS GAUSSIAN PROCESSES

Jaehoon Lee*’, Yasaman Bahri*T, Roman Novak, Samuel S. Schoenholz,
Jeffrey Pennington, Jascha Sohl-Dickstein

Google Brain
{jaehlee, yasamanb, romann, schsam, jpennin, jaschasd}@google.com

ICLR 2018
1300+ citations

Neural Tangent Kernel:
Convergence and Generalization in Neural Networks

Arthur Jacot
Ecole Polytechnique Fédérale de Lausanne
arthur. jacot@netopera.net

Franck Gabriel
Imperial College London and Ecole Polytechnique Fédérale de Lausanne
franckrgabriel@gmail.com

Clément Hongler
Ecole Polytechnique Fédérale de Lausanne
clement.hongler@gmail.com

NeurlPS 2018
3800+ citations

31



Spawned a Burgeoning Industry of Research

= ) WIKIPEDIA Q Createaccount Login e«
" The Free Encyclopedia

i= Neural network Gaussian process %A 3languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural
networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit, in the sense of distribution.['l[2]3]
[415161[7]8] The concept constitutes an intensional definition, i.e., a NNGP is just a GP, but distinguished by how it is obtained.

= 7 ) WIKIPEDIA Q  Createaccount Login «es
L The Free Encyclopedia

i= Neural tangent kernel ¥ 2languages

Article Talk Read Edit View history Tools

From Wikipedia, the free encyclopedia

In the study of artificial neural networks (ANNs), the neural tangent kernel (NTK) is a kernel that describes the evolution of deep artificial
neural networks during their training by gradient descent. It allows ANNSs to be studied using theoretical tools from kernel methods.

In general, a kernel is a positive-semidefinite symmetric function of two inputs which represents some notion of similarity between the two
inputs. The NTK is a specific kernel derived from a given neural network; in general, when the neural network parameters change during
training, the NTK evolves as well. However, in the limit of large layer width the NTK becomes constant, revealing a duality between training
the wide neural network and kernel methods: gradient descent in the infinite-width limit is fully equivalent to kernel gradient descent with the
NTK. As a result, using gradient descent to minimize least-square loss for neural networks yields the same mean estimator as ridgeless
kernel regression with the NTK. This duality enables simple closed form equations describing the training dynamics, generalization, and
predictions of wide neural networks.

The NTK was introduced in 2018 by Arthur Jacot, Franck Gabriel and Clément Hongler,! who used it to study the convergence and
generalization properties of fully connected neural networks. Later works'?J®] extended the NTK results to other neural network architectures.
In fact, the phenomenon behind NTK is not specific to neural networks and can be observed in generic nonlinear models, usually by a
suitable scaling“l.



Contradicting Machine Learning Folklore

Folklore Theorem

|Neural networkslinitialized with(random parameters|(with any law)
converge to|Gaussian processes)in|wide limits.

e Shallow neural networks with RelLU activation functions.

e Special kind of initialization of the network parameters.
e Finite-width networks are non-Gaussian processes.

e Gaussian and non-Gaussian processes in wide limits.

We provide a complete characterization of the statistical distribution
of these neural network processes via their characteristic functional.

33



Shallow ReLU Neural Networks

10

—10

K
xXr — E Vi
k=1

RelLU network

(wy,

T — br)+

RelLU neurons

)

X1

K i1s the “width”
of the network

34



Shallow ReLU Neural Networks

6~ Q

How do we study these random neural networks?

How do we derive a form of its characteristic functional?

We need to find a way to whiten the neural network.

35



Univariate Shallow ReLU Neural Networks

fo(x) = vp(wya — by)y

k=1

fo(x) D fo(x) D fo(x)

v3]w3| U5|w5|
v1|w1\ I ‘

by
w

by by
w w

Sl
sl

b '
We ’U6|UJ6‘

“looks like” a Poisson
white noise

Second derivatives “whiten” univariate neural networks

36



What About the Multivariate Case?

07

37



Whitening Operator of Shallow ReLU Networks

ReLU Neuron: (w'ax —b)

~ ] (

w

[lwlf2

_T b
£
[wlz)

assume w € S94-1

A{(w'z - b), .} =6(w'z — b)

KZA{(w'® — D)1} = 6,

Kg(w) o |w|4~1G(w)

Radon-domain Dirac
centered at (w, b)

Ongie et al. (2020); P. and Nowak (2021); P. and Unser (2024) 38



Whitening Operator of Shallow ReLU Networks

Al
/

Does such a well-behaved inverse exist?

ke(u,t)(u,t)dudt

(’UJTZE — 1) 1] T

ko(uw,t) = (u'ax —t) 5 5 Fu xsgn(t)

P. and Nowak (2021); P. and Unser (2024) 39



Random Generation of Shallow ReLU Networks

Z vk(wp — by) 4

k

1. Generate (vg, wyg, bx) according to some point process on S x R.

w — ka 5(wk,bk)

k

2. Compute the characteristic functional 13w of this point process

3. The characteristic functional of the random neural network is f)w(T*SO)

40



Random Generation of Shallow ReLU Networks
ka(wgm — bi)+
k

"he vy are drawn i.i.d. with respect to Py . The (wg, by) are
drawn such that finite absolute moment

1. The activation thresholds are mutually independent.

2. The expectation of the number of thresholds that intersect

a finite volume in R? is a constant proportional to a rate A > 0.

3. For every finite volume in RY, the thresholds are i.i.d. and

“uniform’” in the volume.

(wy, by, ) form a homogeneous Poisson point process on S~1 x R

Write s ~ RP(A; Py ) (ReLU Process) to denote this randomness.

41



Characteristic Functional of ReLU Processes

Theorem (PBEPU, 2024)

The characteristic functional of random RelLU neural network

s~ RP(\;Py)

Is given by = S(Rd)

P.(¢) = exp ()\ / / / (eivT*{¢}<W>—1) dudthv(v)>.
RJR JSa—-1

S

P, gives us the full statistical distribution of s.

The law P, of s is the inverse Fourier transform of ]38.

42



Properties of ReLU Processes

Theorem (PBEPU, 2024)

Let s ~ RP(A, Pv) and V. ~ Py . Then,

e The process is non-Gaussian.

e The autocovariance of the process is

Cs(z,y) < E[V7] (|l — yllz — |23 — [lyllz + 3z y(l|zll2 + [ly]l2)) -

e [he process is isotropic.

e The process wide-sense self-similar with Hurst exponent H = 3/2

(i.e., s and a'’s(-/a), a > 0 have the same second-order statistics).

43



Asymptotics of ReLU Processes

sy ~ RP(A: Py) A\ controls the width of the
random RelLU neural network
Nx o
T T : :
salo(x) = wyx + by + Z vp(wix — b))y, Ny q Poisson with mean o A|Q}|
k=1

As A\ — oo the network sy is an infinite-width network.

P fixed A A — 00
Gaussian sy Is non-Gaussian s 1s Gaussian
Laplacian sy is non-Gaussian s, is Laplacian

a-stable, &« <2 sy is non-Gaussian s IS a-stable

Random neural networks are non-Gaussian processes even in wide limits.

short proof via characteristic functional +

, . can check for non-Gaussianity by inspection
Lévy-Fernique theorem y Dy Insp

44



Pretty Pictures

P+ is Gaussian

Py is 1.25-stable

IRl &

= 100 = 1000

45



Conclusion

Random shallow RelLU neural networks can be viewed as the deterministic
“mixing’ of a point process on the Radon domain

e Generic procedure to derive the characteristic functional of these
random neural networks = law of the stochastic process

e The characteristic functional streamlines the derivation of properties
(asymptotic and non-asymptotic) of stochastic processes

e We can prove things that “contradict” machine learning folklore

Next steps:

e Explore other Radon-domain point processes (and general Radon
-domain innovation processes)

e Deep neural networks? Compositions of stochastic processes?

46
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Statistics > Machine Learning

[Submitted on 16 May 2024]

Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi, Pakshal Bohra, Ayoub El Biari, Mehrsa Pourya, Michael Unser
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