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A Brief History of Neural Networks and Al
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What Is the Inductive Bias of Neural Networks?

What kinds of functions do neural networks prefer?

930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions
of a Sigmoidal Function

Andrew R. Barron, Member, IEEE
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Andrew Barron

Barron (1993) introduced a class of d-dimensional functions
that can be approximated extremely well by neural networks.

e Such functions can be approximated by a neural network

with K neurons at a rate K 3.

e Rates for classical function classes behave as K~ d«_

the curse

—> Andrew Barron broke the curse of dimensionality!



Support-vector networks
C Cortes, V Vapnik - Machine learning, 1995 - Springer

The support-vector network is a new learning machine for two-group classification problems.

The machine conceptually implements the following idea: input vectors are non-linearly ...
¢ Save DY Cite Cited by 62558 Related articles

e Reproducing kernel Hilbert Spaces
e Representer theorem

|ldeal spatial adaptation by wavelet shrinkage
DL Donoho, IM Johnstone - biometrika, 1994 - academic.oup.com

With ideal spatial adaptation, an oracle furnishes information about how best to adapt a
spatially variable estimator, whether piecewise constant, piecewise polynomial, variable ...

Y% Save PY Cite Cited by 13135 Related articles

Nonlinear total variation based noise removal algorithms
LI Rudin, S Osher, E Fatemi - Physica D: nonlinear phenomena, 1992 - Elsevier

A constrained optimization type of numerical algorithm for removing noise from images is

presented. The total variation of the image is minimized subject to constraints involving the ...
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e The (r)evolution of sparsity
—> Compressed sensing

People Moved On From Neural Networks...

r

Support Vector Machines, Regularization,

Learning with Kernels

Optimization, and Beyond

Bernhard Scholkopf and Alexander J.

*

.wavelet
tour

of signal processing

The Sparse Way




And Here We Are Today
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Large language models (LLMs) like
generative pre-trained transformers (GPT)
have taken the world by storm.

e DALL-E
o ChatGPT

We have come full circle
back to neural networks!

(PDF] Improving language understanding by generative pre-training
A Radford, K Narasimhan, T Salimans, | Sutskever

Natural language understanding comprises a wide range of diverse tasks such as textual
entailment, question answering, semantic similarity assessment, and document ...
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And Here We Are Today

AI GOV Administration Actions Build your Al Skills Bring your Al Skills to the U.S. Make Your VVoice Heard Apply Now Espafiol

PRESIDENT BIDEN

MAKING AI WORK
FOR THE AMERICAN
PEOPLE

JOIN THE NATIONAL Al TALENT SURGE

Apply Now

@ PLAY VIDEO

INTRODUCTION

Al is one of the most powerful technologies of our time. President Biden has been clear
that we must take bold action to harness the benefits and mitigate the risks of Al. The
Biden-Harris Administration has acted decisively to protect safety and rights in the age
of Al, so that everyone can benefit from the promise of Al.

Learn More about the Biden-Harris Administration’s Actions

Develop standards, tools, and tests
to ensure that Al systems are
trustworthy and reliable.



Two Extremes of Al Research

First Extreme Second Extreme

Do we understand how it works? Let's put it everywhere!

More interest in if it could work

Is it reliable and trustworthy? . .
y as opposed to if it could fail.

Theoretical foundations Trial and error

Rationalism Empiricism

Aristotle

Scientific innovation needs both extremes.



Magnetic Resonance Imaging (MRI)

Accelerating MRI scans is one of the principal outstanding problems
in the MRI research community.

Magnetic Resonance in Medicine 58:1182-1195 (2007

Sparse MRI: The Application of Compressed Sensing
e Early approaches were based R L

O n CO m p re Sse d Se n Si n g . Michael Lustig,1* David Donoho,? and John M. Pauly1

Candes et al. (2006)

—> Theoretical guarantees of stability. Donoho (2006)

2021 MR e =
EMB npSS 3o %

e Modern approaches are based Results of the 2020 fastMRI Challenge for
Machine Learning MR Image Reconstruction

O n d ee p I ea r n i n g a n d m a SS i Ve Matthew J. Muckley™, Member, IEEE, Bruno Riemenschneider, Alireza Radmanesh™,

Sunwoo Kim"™, Member, IEEE, Geunu Jeong", Jingyu Ko, Yohan Jun*, Hyungseob Shin,

Dosik Hwang™, Mahmoud Mostapha, Simon Arberet™, Dominik Nickel,
a m O u n ts Of d a t a Zaccharie Ramzi®, Student Member, IEEE, Philippe Ciuciu, Senior Member, IEEE,
" Jean-Luc Starck™, Jonas Teuwen, Dimitrios Karkalousos™, Chaoping Zhang", Anuroop Sriram,

Zhengnan Huang, Nafissa Yakubova, Yvonne W. Lui, and Florian Knoll*”, Member, IEEE

—> Almost no theoretical guarantees.

Can we trust deep-learning-based methods?



Results of the 2020 fastMRI Challenge

Ground
Truth

DNN-Based
Reconstruction

Al-generated hallucinations identified by radiologists as false vessels.

Muckley et al. (2021, IEEE Transactions on Medical Imaging)



Interpretability Crisis of Al and Deep Learning

We essentially understand the entire story
for kernel methods and wavelet/ TV methods.

— These methods are (mathematically) interpretable.

Can we develop a similar
story for neural networks
and deep learning?

Rationalism

My Research

and Nowak (2020, IEEE Signal Process. Lett.)
and Nowak (2021, J. Mach. Learn. Res.)

and Nowak (2022, SIAM J. Math. Data Sci.)
and Nowak (2022, IEEE ICASSP)

and Nowak (2023, IEEE Trans. Inf. Theory)

. and Nowak (2023, IEEE Signal Process. Mag.)
Shenouda, P., and Nowak (2023, SAMPTA)
Shenouda, P., Lee, and Nowak (2023, arXiv)

P. and Unser (2023, IEEE Signal Process. Lett.)
P. and Unser (2023, SAMPTA)

P. and Unser (2023, arXiv)

P. and Unser (2023, arXiv)

DeVore, Nowak, P., and Siegel (2023, arXiv)
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Lessons From Kernel Methods

A representer theorem designates a finite-dimensional
parametric formula to solutions of an optimization problem
posed over an infinite-dimensional function space.

Representer Theorem (circa 1970)

Let H be an RKHS with kernel k(-,-). Then,

N

1, the solution to

for any data set {(x,,yn)

N
min > L(yn: f(@n) + Alfl A >0,
n=1

admits a representation of the form
N

fRKHS (213) — Z ank(m, il?n)

n=1

11



Cubic Smoothing Splines

The solution to

1
mm Z —I—)\/ D f(z)|* do
0

is a cubic (smoothing) spline, ~ 1D f||% 2

N
fspline E CL k $ xn

quadratic regularizer =

: 2 T
where a* = arg min — Ka \a' Ka. kg .
g acRN Hy HZ + solution linear in data y

If v, = f*(x,) + €, with ||D?f*]|;2 < oo, then

4

EHf* T fsplineH%Q — O(N_E) minimax rate

de Boor and Lynch (1966, Journal of Mathematics and Mechanics)
Kimeldorf and Wahba (1971, Journal of Mathematical Analysis and Applications)
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Limitations of Linear/Kernel Methods

True function and noisy data

large A:
oversmooths high variation
portion of the data

small \:
overfits low variation
portion of the data

Linear methods cannot adapt to spatially varying smoothness.

Donoho, Liu, and MacGibbon (1990, Annals of Statistics)

13



Limitations of Linear/Kernel Methods

True function Thin-plate spline Neural network
and noisy data (kernel method)  (nonlinear method)

Neural networks can adapt to low-dimensional structure.

P. and Nowak (2023, IEEE Transactions on Information Theory) 14



Deep Neural Network Architectures

Google DeepMind 2023-10-26

The Evolved Transformer
David So, Quoc Le, Chen Liang Proceedings of the 36th International Conference on Machine ConvNetS M atch Vision Transformers at Scale

Learning, PMLR 97:5877-5886, 2019.

Samuel L Smith!, Andrew Brock!, Leonard Berrada! and Soham De!
1Google DeepMind

convl

| Conv 1x1:512 |

| Conv 1x1 : 2048 |

4
[ Layer Norm ]

"
11/x 112 x 128

[ 8 Head Self Attention : 512 ]

@ convolution+ReLLU

@ max pooling
:ﬂ fully connected+ReLU

)
[ Layer Norm ]

224 x 224 x 64

| Sep Conv 9x1 : 256 |

Very deep convolutional networks for large-scale image recognition

[
[ Layer Norm ] . )
K Simonyan, A Zisserman

CH)

[Conv 1x1 : 2048 J [ Conv 3x1 : 256 ]

In this work we investigate the effect of the convolutional network depth on its accuracy in the
large-scale image recognition setting. Our main contribution is a thorough evaluation of ...

Y% Save Y9 Cite Cited by 112161 Related articles $9

[ Layer Norm ]

Rectified Linear Unit (RelLU)
ReLU(t) = max{0,t} =t

[ Gated Linear Unit : 512 ]

i
[ Layer Norm ]
4

\

-+ weight decay in training
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What Is the Effect of
Regularization in Deep Learning?

16



Neural Balance in Deep Neural Networks

mathematical expression

/ for a single ReLU neuron

v v(w'z), € RP

T

Rds 2 w

weight decay in training

Is equivalent to adding

|lwl|3 + [[v]|3 to the
RelLU activation training objective

Neural Balance Theorem (P. and Nowak, 2023)

If a DNN is trained with weight decay, then the
2-norms of the input and output weights to each
RelLU neuron must be balanced.

|lwll2 = [lv][2

P. and Nowak (2023, IEEE Signal Processing Magazine)



Neural Network Training

NS
NN = >3 S
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Neural network training problem for the data {(x,,, yn

N

min L ynaf@ Ln

OcRFY

n=1

data fidelity

parameterized by a vector 8 € RY
of neural network weights

n=1"

216113
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Weight Decay in Neural Network Training

N

. Aian2
'C T n - H
Tnin, (Yn, fo(2n)) +5 | Hg\

n=1

weight decay

<(9) objective

weight decay

\

Gradient descent update on 6;

gt (22 L) e -] o
/ 00; 0;=0; 00; 6; =01
step size I
“learning rate” GD update on .Z

Hanson and Pratt (1988, NeurlPS)
Krogh and Hertz (1990, NeurlPS)
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Neural Balance

The RelLU activation is homogeneous

v(w'z), = v(hw'z),, forany > 0.

At a global minimizer of the weight decay objective, ||v]|s = ||w]|2.

Proof. The solution to

min |7 w2 + [[Hwll

>0
is 7 = /llvll2/|wll2:

|v]13 + [[wl]3
2

At a global minimizer, = ||v]|2||w]|2.

Grandvalet (1998, ICANN)
Neyshabur et al. (2015, ICLR Workshop)
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Secret Sparsity of Weight Decay

weight decay

min ZC Yn, Jo(Tn)) + = ZH’UkHQ T Hwk’H2

0={(wk,vk)} =y n=1

path norm

min Z»C yn7f9 ajn _|_)‘ZHUICH HwkHQ

0={(wr,vk)} =1 1

multltask lasso

Z»C Yn, Jo(Tn) _I_)‘ZHURHQ

0= {(wkavk)}kz 1 n=1
|wg|l,=1

— ka(wgw)+ 0 = {(wkv’vk)}?zl

Rebalancing

21



Secret Sparsity of Weight Decay

ZE Yn, Jo(Tn) +)‘ZHUI<H2

weight decay <<= o= {('wk,'vk)}k L

Jwp ||, =1

e Weight decay is equivalent to a non-convex multitask lasso.

—  (Convex reformulations of Ergen and Pilanci (202]_, JI\/||_R)
neural network training problems. Sahiner et al. (2021, ICLR)

What Kinds of Functions Do Neural Networks Learn?

Why Do Neural Networks Work Well in High-Dimensional Problems?

Practical Implications for Learning with Deep Neural Networks.

22



What Kinds of Functions
Do Neural Networks Learn?

23



Shallow Neural Networks With Scalar Outputs

| o folx) = Z Ve (wT T

k=1

min ZC Yns Jo(Tn)) + = Z‘UH + [l w5

0={(wr,vx) her 1

min Z£ ynvf@ CBn —|—)\Z‘Uk”|wkH2

O={(wr,vx) her 1

path norm

24



Path-Norm and Neural Banach Spaces

K
F =< f®)=>) vp(wiw);: vp € Rw, eRY K €N

k=1 finite-width

_ . networks
The path-norm is a valid norm on F:

K
1fllz =D _lorllwell,
k=1

The “completion” of F (in an appropriate sense) is a Banach space.
It is the Banach space of all functions of the form

f@) = [ (w'e) dviw)
\

Barron (1993, IEEE Transactions on Information Theory) output weights

Bach (2017, Journal of Machine Learning Research)
Siegel and Xu (2023, Constructive Approximation)
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Path-Norm and Derivatives

K
— Z”Uk;(wkilj — bk)_|_

k=1
fo(x) D fo(z) D*fo(x)
’03|w3| U5|UJ5|
/\/\/ 1 ]
Y 2 7
w wy W Wy w5  We U6|w6‘
v2|w2|
v4\w4\

M ' ly:
path-norm( fo) Z\kawkl —/ D*fo(2)| Az o0/ varintion of D/

“How do infinite width bounded norm networks look in function space?”
Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro
Conference on Learning Theory (2019) 26



Weight Decay = TV (D f)-Regularization

min Zﬁ (Yn, fo(zn)) + = Z\Uk\ + |wg|”

0={(wr,vk) he1 1

win S Ly folen) Hz\vkuwk\

0={(wr,vx)ther 1

min Z L(Yn, fo(zn)) + ATV(D fo)
O={(wr, Uk)}k; 1 =1
~

TV?(fo)

BV? is the space of all functions with TV*(f) = ||[D?f||x < oc.

27



What About the Multivariate Case?

07

28



Multivariate Extension: The Radon Transform

[ R Dirac “lines” [ filtered 0 at each
f differentiate L neuron
o —> wice —> along activation =»| Radon (= T _
. ) thresholds | transform |  weight/bias
ReLU network 50— Mmagnitude of

each §: v ||wgl|2

0 7 .

X1

w = (cosf,sinf)

second-order

path-norm( fo) Z\vkmwkug = |KZAfo||a Radon-domain

total variation
k=1

“A function space view of bounded norm infinite width ReLU nets: The multivariate case”
Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro
International Conference on Learning Representations (2020) 29



The Neural Banach Space #BV*

total variation

Radon-domain TV?: ZTV?(f) = |KZAf|| m of the measure
KZAf

K % = filtered Radon transform Kg(w) o |w]415(w)
A=Y 2 = Laplac ¢
2 52 aplacian operator

Average measure of sparsity of second
derivatives along each direction in R¢.

% BV? is the space of all functions on R* with Z TV?(f) < 0.

Banach, not Hilbert!

P. and Nowak (2021, Journal of Machine Learning Research)
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A Banach Space Representer Theorem

Neural Network Representer Theorem (P. and Nowak 2021)

For any data set {(x,,yn)}_; and lower semicontinuous L(-, -),

there exists a solution to

N
j LY, f(x,)) FXNZTV?(f), X>0,
feg%%lw; (Yn, f(Tn)) + (f)

that admits a representation of the form

K
fReLU(T) = ka(wlw — br) 4|+ wgm + bo,| | K < N.

k=1 RelLU neurons skip connection sparse solution

Training a sufficiently parameterized

neural network (K > N) with weight Neural networks learn
decay (to a global minimizer) is a solution 2 BV“-functions.

to the Banach space problem.

P. and Nowak (2021, Journal of Machine Learning Research)



Why Do Neural Networks Work
Well in High-Dimensional Problems?

32



Neural Networks Adapt to Directional Smoothness

True function Thin-plate spline Neural network
and noisy data (kernel method)  (nonlinear method)

Variation in only a few directions is a defining characteristic of Z BV~.

P. and Nowak (2023, IEEE Transactions on Information Theory) 33



Neural Banach Spaces

% BV*(Q)
Radon-domain BV space
“sparsity in Radon domain”

va
"7’ N

%°(Q2)
spectral Barron space

/O+Whﬁﬂwa<w

“sparsity in Fourier domain”

cartoon diagram
of unit Z BV>-ball

H*(Q), s >d/2+ 2
Sobolev space
“s derivatives in L?(Q)"

P. and Nowak (2023, IEEE Transactions on Information Theory) 34



Breaking the Curse of Dimensionality?

Given f € #BV? there exists a finite-width ReLU network
fx with K neurons such that

v Barron (1993)

_1_ 3 _1 Matousek (1996

1 = Frclliooq = OK 331y = O(K—H).  Hoi 9
Siegel (2023)

By the inequality of Carl (1981), this implies 1

¥ @

~ _ 2d ~

log N (8, U(ZBV?), || - || () = O(6~ @) = O(62).

unit ball

Approximation rates and metric entropies
do not grow with the input dimension d.

P. and Nowak (2023, IEEE Transactions on Information Theory)
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Minimax Optimality of Neural Networks

Suppose that {x,}2_, are i.i.d. uniform on a bounded domain Q) C R
If ¥, = f*(,) + €, With ZTV?(f*) < 00, then any solution to

N K
, A weight decay
freru € argmin > L(yn, fo(@n)) + 5 > lonl* + [ will3 objecive
n=1 k=1

Satisfies no curse
~ d+3 ~ r

E|f* — freLull?2(q) = O(N"20%3) = O(N~2).

minimax rate

Linear methods (thin-plate splines, kernel methods, neural tangent
kernels, etc.) necessarily suffer the curse of dimensionality.

. .. _ .3
Linear minimax lower bound: /N~ d+3

the curse

P. and Nowak (2023, IEEE Transactions on Information Theory) 36



What Does All of This Mean for
Learning With Deep Neural Networks?

37



Layers of Vector-Valued Shallow Networks

Deep Neural Networks are Layers of Shallow Vector-Valued Networks

38



The Structured Sparsity of Weight Decay

N K weight decay
min A Zﬁ(ymfé’(wn))‘l‘)‘ZHUkHQ —
O={(wr,vr)}e1 5, k=1 :
|wg||,=1 non-convex multitask lasso
dense weights sparse weights sparse neurons
K
D
fi(z)
fo(x)
b fp(x)
O(K /D) O(VD)

Weight decay favors variation in only a few directions (sparse weights)

Weight decay favors outputs that “share” neurons (sparse neurons)

39



Tight Bounds on Widths

Consider one RelLU layer within a trained deep neural network
with weight decay

to a global minimizer
N

%@ — {¢n n=1

7 A\
m./!i//!f{{g'gg’f/// \\\\é\\&\g\\\\

Sl
7 QRN
A\
9'5» \‘\;‘E

push the magnitude
U = {4, }N_, of wy, into vy

=

)

q
(

P
Ve

7
\

A V.
= T V-
N\

e //Z

/‘llr \
MR //%/
N ///

multitask lasso

At each Iay.er, th? Yve!ght min Z |vgll2 st. ¥ =V,
decay solution minimizes {vR }E

Shenouda, P., Lee, and Nowak (2023+)
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Tight Bounds on Widths

/\(I):{qsn 7];[:1 K
min = Y [vgllz st ¥ =V

foedizy 15

v Low-rank data embeddings have been
observed empirically by Huh et al. (2022).

Layer Width Theorem (Shenouda, P., Lee and Nowak 2023+ )

Let @ denote the post-activation features and ¥ denote the neuron
outputs of any RelLU layer in a trained DNN (minimizes the
weight decay objective). Then, there exists a representation with

K < rank((I)) rank(\Il) < N? Bound of Jacot (2023): N(N +1).

neurons. The representation can be found by solving a convex
multitask lasso problem.

Shenouda, P., Lee, and Nowak (2023+) 41



Application: Principled DNN Compression

VGG-19 trained with weight decay on CIFAR-10.

final ReLU layer
airpene st MR E o [ BRI K =512 neuril)ns
automobile EE@E“H%
nd ] WERT ¥ B
«  EEOHNEEEs P
oo TP Y N R
awg  [HIME LN = EAPARY o VR
g [ M s S I S
horse :.ﬁmﬂmﬂmm
N =
truck Juhugiaﬂ

AN
AN

output dimension
D =10

Theory: There exists a representation with
< rank(®) rank(¥) ~ 10 - 10 = 100 neurons.

original network  compressed network

active neurons 9512 47 10x compression!
test accuracy  93.92% 93.88% no change in
train loss 0.0104 0.0112 performance!

Shenouda, P., Lee, and Nowak (2023+) 42



Summary

RelLU neural networks are optimal solutions to data-fitting problems
in new function spaces:
e Radon-domain bounded variation spaces

e Banach, not Hilbert

e immune to the curse of dimensionality

e solutions are sparse/narrow

e solutions are adaptive to spatial and directional varying smoothness
Weight decay is secretly a sparsity-promoting regularization scheme.

e promotes neuron sharing (structured sparsity)

e motivates the design of principled DNN compression schemes
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This i1s Just the Beginning!
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Going Forward: Theory

What kinds of functions do structured neural architectures learn?
e Attention mechanisms and transformers

o Orthogonal weight normalization: W'W =1 P. and Unser (2023 +)

What are the fundamental limits of shallow networks?
o #BV? does not capture everything DeVore, Nowak, P. and Siegel (2023+)
e Characterization of the approximation spaces of shallow networks

e Quantitative depth separation results

45



Going Forward: Applications

Function-space view on implicit neural representations

e Implicitly defined, continuous, differentiable signal
Stanley (2007)

representations parameterized by neural networks

e Gained popularity for denoising,

compression, and inverse problems ;\ WD

(e.g., CryO-El\/l, CT) ‘ wotaizst

Fundamental limits of DNN compression

e Fast inference on edge devices

and embedded systems
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Research Vision

Towards trustworthy and reliable deep learning in practice.

P. and Nowak (2021, J. Mach. Learn. Res.)
P. and Nowak (2023, IEEE Trans. Inf. Theory)
P. and Nowak (2023, IEEE Signal Process. Mag.)
P. and Unser (2023, arXiv)
DeVore, Nowak, P., and Siegel (2023, arXiv) Shenouda, P., Lee, and Nowak (2023, arXiv)
»  Numerical
Theory L
< Investigations
e.g., implicit neural e.g., compressed DNNs
representations ongoing research: on the edge

INRs for image denoising

Collaborations with
domain experts in

Applications

e computer engineering
® Imaging science

47



Conclusion

» Numerical
< Investigations

Theory

Applications
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