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The World Is Now Based on Neural Networks
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Large language models (LLMs) like
generative pre-trained transformers (GPT)
have taken the world by storm.

o ChatGPT
e (Claude

Do we even understand why
neural networks work?

(PDF] Improving language understanding by generative pre-training
A Radford, K Narasimhan, T Salimans, | Sutskever

Natural language understanding comprises a wide range of diverse tasks such as textual
entailment, question answering, semantic similarity assessment, and document ...
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Today’s Talk

Understanding analytic properties of trained neural networks.

~ parameterized by a vector 8 € R
L L (w) of neural network weights

.o N
Neural network training problem for the data {(x,,yn)}, ;-
al A
: 2 Tikhonov
min T — 10|, <
OcRP E(yn’ f@( n)) T 9 H ||2 regularization
n=1 X , “weight decay”
data fidelity regularization

We will be agnostic to the optimization algorithm.
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Neural Balance in Deep Neural Networks

mathematical expression

/ for a single ReLU neuron

v wvlw'z)y €¢RP

Rds 2 w

weight decay in training
Is equivalent to adding
|lwl|3 + [[v]|3 to the

RelLU activation training objective

Neural Balance Theorem

If a DNN is trained with weight decay, then the
2-norms of the input and output weights to each
RelLU neuron must be balanced.

|lwll2 = [lv][2

P. and Nowak (2023)



Neural Balance

The RelLU activation is homogeneous

v(w'z), = v(hw'z),, forany > 0.

At a global minimizer of the weight decay objective, ||v]|s = ||w]|2.

Proof. The solution to

min |7 w2 + [[Hwll

>0
is 7 = /llvll2/|wll2:

|v]13 + [[wl]3
2

At a global minimizer, = ||v]|2||w]|2.

Grandvalet (1998, ICANN)
Neyshabur et al. (2015, ICLR Workshop)



Secret Sparsity of Weight Decay

— ka(wgw)+ 0 = {(wkv’vk)}é{zl

N\ 77 :
NV weight decay
\\/
Y

min ZC Yn, Jo(Tn)) + = ZH’UkHQ T Hwk’Hz

0={(wk,vk)} =y n=1

path norm

min Z»C yn7f9 ajn _|_)‘ZHUI€H HwkHQ

0={(wr,vk)} =1 1

multltask lasso

Z»C Yn, Jo(Tn) ‘|‘)\ZHUI<:H2

0= {(wkavk)}kz 1 n—1
|wg|l,=1

Rebalancing



What Kinds of Functions
Do Neural Networks Learn?



Path-Norm and Neural Banach Spaces

K
V=1 f(z) = Y vp(wim)y s vp € RY wp e R K €N
k=1

finite-width

O
The path-norm is a valid norm on V: vector-valued
networks

K
[fllv =D _llvkllsllwgll,
k=1

O
The “completion” of V (in an appropriate sense) is a Banach space.
It is the Banach space V of all functions of the form vector-valued

/ measure
f@)= [ (o). dvw)
\

Barron (1993, IEEE TIT) “output weights”
Bach (2017, JMLR)

Ongie et al. (2020, ICLR)

Shenouda, P., Lee, and Nowak (2024, JMLR)
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Path-Norm and Derivatives

K
— ka(wkx — bk)_|_

k=1
fo(x) D fo(z) D*fo(x)
03]w3| U5|UJ5|
/\/\/ 1 ]
Y 2 7
w w2  ws Wy w5  We U6|w6‘
v2|w2|
v4\w4\

M ' ly:
path-norm( fo) Z\kawkl —/ D*fo(2)| Az o0/ varintion of D/

“How do infinite width bounded norm networks look in function space?”
Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro
Conference on Learning Theory (2019) 1



Weight Decay = TV (D f)-Regularization

min Zﬁ (Yn, fo(zn)) + = Z\Uk\ + |wg|”

0={(wr,vk) he1 1

win S Ly folen) Hz\vkuwk\

0={(wr,vx)ther 1

min Z L(Yn, fo(zn)) + ATV(D fo)
O={(wr, Uk)}k; 1 =1
~

TV?(fo)

BV? is the space of all functions with TV*(f) = ||[D?f||x < oc.
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What About the Multivariate Case?

07
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Multivariate Extension: The Radon Transform

[ R Dirac “lines” [ filtered 0 at each
f differentiate L neuron
o —> wice —> along activation =»| Radon (= T _
. ) thresholds | transform |  weight/bias
ReLU network 50— Mmagnitude of

each §: v ||wgl|2

0 7 .

T

w = (cosf,sinf)

second-order

path-norm( fo) Z\vkmwkug = |KZAfo||a Radon-domain

total variation
k=1

“A function space view of bounded norm infinite width ReLU nets: The multivariate case”
Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro
International Conference on Learning Representations (2020) 14



The Neural Banach Space #BV*

total variation

Radon-domain TV?: ZTV?(f) = |KZAf|| m of the measure
K ZAf

K % = filtered Radon transform Kg(w) o |w]415(w)
A=Y 2 = Laplac ¢
2 52 aplacian operator

Average measure of sparsity of second
derivatives along each direction in R¢.

% BV? is the space of all functions on R* with Z TV?(f) < 0.

Banach, not Hilbert!

P. and Nowak (2021, Journal of Machine Learning Research)
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A Banach Space Representer Theorem

Neural Network Representer Theorem (P. and Nowak 2021)

For any data set {(x,,yn)}_; and lower semicontinuous L(-, -),

there exists a solution to

N
j LY, f(x,)) FXNZTV?(f), X>0,
[ Jain nz::l (Yns [(®n)) + (f)

that admits a representation of the form

K
fReLU(T) = ka(wlw — br) 4|+ fwgm + bo,| | K < N.

k=1 RelLU neurons skip connection sparse solution

Training a sufficiently parameterized

neural network (K > N) with weight Neural networks learn
decay (to a global minimizer) is a solution % BV?-functions.

to the Banach space problem.

P. and Nowak (2021, Journal of Machine Learning Research)



Why Do Neural Networks Work
Well in High-Dimensional Problems?

17



Neural Networks Adapt to Directional Smoothness

True function Thin-plate spline Neural network
and noisy data (kernel method)  (nonlinear method)

Variation in only a few directions is a defining characteristic of Z BV~.

P. and Nowak (2023, IEEE Transactions on Information Theory) 18



Breaking the Curse of Dimensionality?

Given f € #BV? there exists a finite-width ReLU network
fx with K neurons such that

v Barron (1993)

_1_ 3 _1 Matousek (1996

1 = Frclliooq = OK 331y = O(K—H).  Hoi 9
Siegel (2023)

By the inequality of Carl (1981), this implies 1

¥ @

~ _ 2d ~

log N (8, U(ZBV?), || - || () = O(6~ @) = O(62).

unit ball

Approximation rates and metric entropies
do not grow with the input dimension d.

P. and Nowak (2023, IEEE Transactions on Information Theory)
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Minimax Optimality of Neural Networks

Suppose that {x,}2_, are i.i.d. uniform on a bounded domain Q) C R
If ¥, = f*(,) + €, With ZTV?(f*) < 00, then any solution to

N K
, A weight decay
freru € argmin > L(yn, fo(@n)) + 5 > lonl* + [ will3 objecive
n=1 k=1

Satisfies no curse
~ d+3 ~ r

E|f* — freLull?2(q) = O(N"20%3) = O(N~2).

minimax rate

Linear methods (thin-plate splines, kernel methods, neural tangent
kernels, etc.) necessarily suffer the curse of dimensionality.

. .. _ .3
Linear minimax lower bound: /N~ d+3

the curse

P. and Nowak (2023, IEEE Transactions on Information Theory) 20



What Does All of This Mean for
Learning With Deep Neural Networks?

21



Layers of Vector-Valued Shallow Networks

Deep Neural Networks are Layers of Shallow Vector-Valued Networks

22



The Structured Sparsity of Weight Decay

dense weights sparse weights sparse neurons

K

1o fp(x)

O(K+'D)

Weight decay favors outputs that “share” neurons (sparse neurons)

23



Weight Decay Promotes Neuron Sharing

HATV? regularization

N —
min (J(f) — Z L:(yn7 f(a;n)) + )\%TVQ(]E)) path-norm regularization

fEZBV? —

n=1 weight decay

Neuron Sharing Theorem (Shenouda, P., Lee and Nowak 2024)

Consider one layer of a deep neural network

@)=Y op(wla),.
k=1

here exists § > 0 such that, if Z(wi,ws) < 6, then the neural

network that shares neurons has a strictly smaller objective value.
That 1s,

~

f(x) = f(x) — vi(wiz) + 01 (w; x)
satisfies J(f) < J(f).

Shenouda, P., Lee, and Nowak (2024, JMLR) 24



Summary

RelLU neural networks are optimal solutions to data-fitting problems
in new function spaces:

e Radon-domain bounded variation spaces

e Banach, not Hilbert

e immune to the curse of dimensionality

e solutions are sparse/narrow

e solutions are adaptive to spatial and directional varying smoothness

e weight decay Is secretly sparsity-promoting regularization scheme

e weight decay promotes neuron sharing in deep neural networks

25



Open Problems

What are the fundamental limits of shallow networks?

o Z#BV? does not capture everything DeVore, Nowak, P. and Siegel (2025, ACHA)

e Characterization of the approximation spaces of shallow networks?
—> In 1D, these are Besov spaces Petrushev (1986)

e Quantitative depth separation results?

What kinds of functions do structured neural architectures learn?

e Orthogonal weight normalization and pooling layers
P. and Unser (2025, SIAM J. Math. Data Sci.)

—> New theory about the distributional k-plane transform
P. and Unser (2024, SIAM J. Math. Anal.)

e Attention mechanisms and transformers?

Questions?
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