Modulation Spaces and the Curse of Dimensionality

Rahul Parhi Biomedical Imaging Group École polytechnique fédérale de Lausanne

(joint work with Michael Unser)

Sampling Theory and Applications Conference 14 July 2023

What is the Curse of Dimensionality?

- The phrase the "curse of dimensionality" was (allegedly) coined by Bellman 1961.
 - \implies Optimization by exhaustive enumeration on product spaces.
 - \implies e.g., Cartesian grid of spacing, say, 1/5 on the unit cube $[0,1]^d$.
 - $d=5 \implies 5^5 \sim 3,000$
 - $d = 10 \implies 5^{10} \sim 10,000,000$
 - $d = 15 \implies 5^{15} \sim 30,000,000,000$
- Problems become intractable even in low (d = 15) dimensions!
- Many modern problems (data science/machine learning) are very high-dimensional.

Today's Fundamental Question

Is there a way to avoid the curse of dimensionality?

More Concretely...

Let $f \in W^{1,\infty}(\Omega)$, where $\Omega \subset \mathbb{R}^d$ is bounded (e.g., $\Omega = [0,1]^d$).

- Approximately optimize f to an error $\varepsilon > 0$.
 - \implies Need $(1/\varepsilon)^d$ evaluations on a grid. (Bellman 1961)
- Approximate f to an error $\varepsilon > 0$ with, say, wavelets.
 - $\implies \text{Need } N = (1/\varepsilon)^d \text{ wavelets.} \qquad (\text{DeVore 1998})$ $\implies \text{The best } N\text{-term } L^2\text{-approximation error rate is } N^{-\frac{1}{d}}.$
- Learn/estimate f from noisy measurements, say,

$$y_m = f(\boldsymbol{x}_m) + \varepsilon_m, \ m = 1, \dots, M.$$

 \implies MISE rate from wavelet thresholding is $M^{-\frac{2}{2+d}}$. (Donoho and Johnstone 1998)

What's Going On?

- The assumption f ∈ W^{1,∞}(Ω) is too general.
 ⇒ W^{1,∞}(Ω) is too large of a model class.
- In fact, all model classes defined via classical notions of smoothness (say, s derivatives in L^p) suffer the curse of dimensionality.

 \implies The $L^2\text{-entropy}$ number of the unit ball of $B^s_{p,q}(\Omega)\subset\subset L^2(\Omega)$ scales as

$$\varepsilon_N(\{f: ||f||_{B^s_{p,q}} \le 1\})_{L^2} \asymp N^{-\frac{s}{d}}$$

- How precisely functions can be specified by N-bits.
- Famous theorem of Birman and Solomyak 1967.

Question

Can we design model classes that are **immune** to the curse of dimensionality?

In 1993...

• ...Andrew Barron broke the curse of dimensionality.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 3, MAY 1993

Universal Approximation Bounds for Superpositions of a Sigmoidal Function

Andrew R. Barron, Member, IEEE

• If $\int_{\mathbb{R}^d} (1 + |\boldsymbol{\xi}|)^s |\widehat{f}(\boldsymbol{\xi})| d\boldsymbol{\xi} < \infty$, then there exists a shallow neural network f_N with N neurons such that $\|f - f_N\|_{L^2(\Omega)} \lesssim N^{-\frac{1}{2}}$

 \implies This rate is **immune** to the curse of dimensionality!

A Key Observation

930

 $\mathscr{B}^{s}(\mathbb{R}^{d}) = \{f \in \mathcal{S}'(\mathbb{R}^{d}) : \int_{\mathbb{R}^{d}} (1 + |\boldsymbol{\xi}|)^{s} |\widehat{f}(\boldsymbol{\xi})| \, \mathrm{d}\boldsymbol{\xi} < \infty\}$ is a Banach space defined by a measure of **sparsity** in the Fourier domain.

Breaking the Curse of Dimensionality with Sparsity

• The work of Barron 1993 spurred a lot of interest from the approximation theory community.

 \implies Why are \mathscr{B}^s functions "immune" to the curse of dimensionality?

- The underlying idea was made precise by Donoho 2000:
 - $\implies \text{Let } \mathcal{F} \coloneqq \mathcal{F}(\mathbb{R}^d) \text{ be a function space whose elements are} \\ \text{representable by } \ell^1\text{-combinations of } L^\infty\text{-atoms, i.e., for every} \\ f \in \mathcal{F}, \text{ there exists a signed (Radon) measure } \mu \text{ such that} \end{cases}$

$$f(\cdot) = \int_{\Omega} \phi_{\omega}(\cdot) \,\mathrm{d}\mu(\omega),$$

where $\|\mu\|_{\mathcal{M}} < \infty$ and $\{\phi_{\omega}\}_{\omega \in \Omega}$ is a dictionary of L^{∞} -atoms.

- $\implies f \in \mathcal{F} \text{ can be approximated (in } L^2) \text{ with } N \text{-terms from the} \\ \text{dictionary } \{\phi_{\omega}\}_{\omega \in \Omega} \text{ at a rate } N^{-\frac{1}{2}}. \tag{Maurey 1981}$
- \implies Such spaces are called **variation spaces**.
- The key idea here is **sparsity**.
 - \implies The $\mathcal M\text{-norm}$ is the continuous-domain analogue of the $\ell^1\text{-norm}.$
 - $\implies \mbox{Morally, \mathcal{F} is an ℓ^1-type space and therefore has an interesting} $$ geometry.$

The Geometry of Sparsity in High-Dimensions

• d = 2:

 \Rightarrow Misleading in high-dimensions!

• ℓ^1 -ball as d becomes large:

 \Longrightarrow

 ℓ¹-balls become very "spikey" in high-dimensions.

 High-dimensional ℓ¹-balls have exponentially many tentacles
 that grow in length as d becomes large.

The Geometry of Sparsity in High-Dimensions

Milman 1998 : high-dimensions $\implies \ell^1$ -balls look like hedgehogs.

Approximation in Variation Spaces

• Let \mathcal{F} be a variation space for the dictionary $\mathcal{D} \coloneqq \{\phi_{\omega}\}_{\omega \in \Omega}$.

Define

$$\Sigma_N \coloneqq \Sigma_N(\mathcal{D}) \coloneqq \left\{ \sum_{n=1}^N c_n \phi_{\omega_n} : \phi_{\omega_n} \in \mathcal{D} \right\}$$

• The **best** *N*-term approximation of $f \in \mathcal{F}$ from Σ_N is

$$\sigma_N(f)_{L^2} \coloneqq \inf_{f_N \in \Sigma_N} \|f - f_N\|_{L^2}.$$

This is nonlinear approximation since Σ_N is a nonlinear space:

$$\implies$$
 In general for $f, g \in \Sigma_N$, $f + g \in \Sigma_{2N}$.

Approximation in Variation Spaces

• From earlier,

(Maurey 1981)

$$\sigma_N(f)_{L^2} \lesssim N^{-\frac{1}{2}}.$$

• This rate can be improved

(Siegel and Xu 2022)

$$\sigma_N(f)_{L^2} \lesssim N^{-\frac{1}{2} - \frac{\alpha}{d}}.$$

 $\implies \alpha \coloneqq \alpha(\mathcal{D})$ is the **smoothness constant** of \mathcal{D} .

 The improvement α/d captures the efficacy of linear approximation methods.

- \implies The best linear approximation rate typically scales as $N^{-\frac{\alpha}{d}}$.
- \implies Linear methods necessarily suffer the curse of dimensionality.

Examples of Variation Spaces

• $\mathscr{B}^s(\Omega)$ is a variation space for the dictionary $\{ \boldsymbol{x} \mapsto (1 + |\boldsymbol{\xi}|)^{-s} e^{\mathrm{j} 2\pi \boldsymbol{\xi}^\mathsf{T} \boldsymbol{x}} \}_{\boldsymbol{\xi} \in \mathbb{R}^d}$

⇒ P. and Nowak 2022; Siegel and Xu 2023
 ⇒ σ_N(f)_{L²} ≤ N^{-1/2 - s/d} (i.e., α = s).
 ℜ BV^k(Ω) (BV-type space defined in the Radon domain) is a variation space for the dictionary

$$\{\boldsymbol{x} \mapsto (\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} - b)_{+}^{k-1}\}_{(\boldsymbol{w},b)\in\mathbb{S}^{d-1}\times\mathbb{R}}$$

⊅

$$\operatorname{ReLU}^{k-1}$$
 neurons.

- $\begin{array}{l} \implies & \text{Ongie et al. 2020; P. and Nowak 2021, 2022, 2023} \\ \implies & \sigma_N(f)_{L^2} \lesssim N^{-\frac{1}{2} \frac{2k-1}{2d}} \text{ (i.e., } \alpha = (2k-1)/2\text{).} \end{array}$
- For these two examples, the rates are **sharp**.

Modulation Spaces

- Modulation spaces are smoothness spaces defined in the short-time Fourier transform domain.
- $M^s_{p,q}(\mathbb{R}^d)$ is the subspace of $\mathcal{S}'(\mathbb{R}^d)$ such that

$$\begin{split} \|f\|_{M^s_{p,q}} \\ \coloneqq \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |\nabla_g \{f\}(\boldsymbol{x},\boldsymbol{\xi})|^p (1+|(\boldsymbol{x},\boldsymbol{\xi})|)^{sp} \,\mathrm{d}\boldsymbol{x} \right)^{q/p} \,\mathrm{d}\boldsymbol{\xi} \right)^{1/q} \end{split}$$

is finite.

 $\implies V_g\{f\}$ is the STFT of f with respect to the window $g \in \mathcal{S}(\mathbb{R}^d)$.

- Modulation spaces stemmed from the work of Feichtinger 1981.
 - $\implies M^0_{1,1}(\mathbb{R}^d)$ is the smallest Segal algebra isometrically invariant under modulations.
- Gabor/local Fourier/Wilson-type bases are unconditional bases for the modulation spaces. (Feichtinger et al. 1992)
 - $\implies M^s_{1,1}(\mathbb{R}^d)$ is formed from functions that are $\ell^1\text{-combinations}$ of Gabor atoms.
 - $\implies M^s_{1,1}(\mathbb{R}^d)$ is a variation space!

Nonlinear Approximation in Modulation Spaces

Define

$$\Sigma_N \coloneqq \left\{ \sum_{n=1}^N c_n \psi_n : \psi_n \text{ is an element of a Gabor frame} \right\}$$

• Define the best N-term approximation of $f\in M^s_{1,1}(\mathbb{R}^d)$ from Σ_N as

$$\sigma_N(f)_{L^2} = \inf_{f_N \in \Sigma_N} \|f - f_N\|_{L^2}$$

- Again, this is nonlinear approximation.
- Many existing results on approximating $M^s_{p,q}(\mathbb{R}^d)$ functions with Gabor atoms.
 - \implies Gröchenig and Samarah 2000; Borup and Nielsen 2006; Borup and Nielsen 2007
 - \implies Many unresolved questions as well.
 - ⇒ Today, we will find several new results in the context of dimension-free nonlinear approximation rates in modulation spaces.

Main Results: Approximation Upper Bound

Theorem (P. and Unser 2023)

Let $s \ge 0$. For every $f \in M^s_{1,1}(\mathbb{R}^d)$,

$$\sigma_N(f)_{L^2} = \inf_{f_N \in \Sigma_N} \|f - f_N\|_{L^2} \lesssim N^{-\frac{1}{2} - \frac{s}{2d}}.$$

Furthermore, the approximant f_N that achieves this rate is found by thresholding the Gabor coefficients of f.

- Abstract result of Maurey 1981, gives the rate $N^{-\frac{1}{2}}$ for free.
- With some extra work, we get the **improved rate** $N^{-\frac{1}{2}-\frac{s}{2d}}$.
 - \implies Improved rate uncovers the role of s.
 - \implies Functions in $M_{1,1}^s(\mathbb{R}^d)$ for large s are **smoother** and hence **easier** to approximate.
- This rate is **immune to the curse of dimensionality**.

Main Results: Approximation Lower Bound

Theorem (P. and Unser 2023)

Let s > 0. For every $f \in M^s_{1,1}(\mathbb{R}^d)$,

$$\sigma_N(f)_{L^2} = \inf_{f_N \in \Sigma_N} \|f - f_N\|_{L^2} \gtrsim N^{-\frac{1}{2} - \frac{s}{2d}}.$$

- The requirement s > 0 arises since the result is proved using a technique based on entropy. (Carl 1981; Cohen et al. 2022)
 ⇒ M^s_{1,1}(ℝ^d) ⊂⊂ L²(ℝ^d) iff s > 0. (Hinrichs et al. 2008)
- Rate achieved by thresholding is sharp: $\sigma_N(f)_{L^2} \simeq N^{-\frac{1}{2} \frac{s}{2d}}$

Main Results: Suboptimality of Linear Methods

Theorem (P. and Unser 2023)

Let s > 0. Given $f \in M^s_{1,1}(\mathbb{R}^d)$. The best N-term **linear** approximation of f cannot achieve an approximation error that decays faster than $N^{-\frac{s}{2d}}$.

• Technically, we showed that the linear N-width of the unit ball in $M^s_{1,1}(\mathbb{R}^d)$ scales as $\asymp N^{-\frac{s}{2d}}$.

Transform-Domain Sparsity Breaks the Curse?

- \mathscr{B}^s : sparsity in the Fourier domain.
 - \implies Nonlinear approximation rate: $N^{-\frac{1}{2}-\frac{s}{d}}$.
 - \implies Linear approximation rate: $N^{-\frac{s}{d}}$.
- $\mathscr{R} \operatorname{BV}^k$: sparsity in the Radon domain.
 - \implies Nonlinear approximation rate: $N^{-\frac{1}{2}-\frac{2k-1}{2d}}$.
 - \implies Linear approximation rate: $N^{-\frac{2k-1}{2d}}$.
- $M_{1,1}^s$: sparsity in the STFT domain.
 - \implies Nonlinear approximation rate: $N^{-\frac{1}{2}-\frac{s}{2d}}$.
 - \implies Linear approximation rate: $N^{-\frac{s}{2d}}$.

Observations

- Sparsity in a transform domain "breaks" the curse of dimensionality for **nonlinear** approximation rates.
- Linear approximation methods always "suffer" the curse of dimensionality.
- Nonlinear methods are **required** to break the curse.

A Recipe for Breaking the Curse of Dimensionality

- Explicitly define a variation space \mathcal{F} with respect to a dictionary \mathcal{D} .
 - \implies Best *N*-term nonlinear approximation rate from $\Sigma_N(\mathcal{D})$ is immune to the curse of dimensionality.
 - \implies Best *N*-term linear approximation rate from $\Sigma_N(\mathcal{D})$ suffers the curse of dimensionality.

Caveat

The space \mathcal{F} is **already constructed** with the property that its N-term approximation rates are immune to the curse. Therefore, this result can be viewed as **boring**.

- Define a function space based on different kinds of **smoothness** and show that the spaces are equivalent to certain variation spaces.
 - \implies This was the story for \mathscr{B}^s , $\mathscr{R} \operatorname{BV}^k$, and $M_{1,1}^s$.
 - ⇒ Transform-domain sparsity often seems to work. Can we make this a **precise mathematical statement**?

Open Problems

- Further understanding of what analytic properties of functions leads to breaking the curse.
- Having a complete story for approximation theory with Gabor atoms.
 - \implies A complete characterization of the **approximation spaces** for Gabor frames.
- Bridging the gap between mathematical statistics and Gabor analysis.
 - \implies Some preliminary work in this direction: Dahlke et al. 2022.
 - ⇒ A complete understanding of approximation theory in the Gabor analysis setting is the first step towards bringing **finite data** to the problem.
 - ⇒ A story similar to wavelets, Besov spaces, and nonparametric statistics in the Gabor analysis setting would be nice.

References I

- Barron, Andrew R. (1993). "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3, pp. 930–945.
- - Bellman, Richard E. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press.
- Birman, Mikhail Shlemovich and Mikhail Zakharovich Solomyak (1967). "Piecewise-polynomial approximations of functions of the classes W_p^{α} ". In: Matematicheskii Sbornik 115.3, pp. 331–355.
- Borup, Lasse and Morten Nielsen (2006). "Nonlinear approximation in α-modulation spaces". In: Mathematische Nachrichten 279.1-2, pp. 101–120.
- (2007). "Frame decomposition of decomposition spaces". In: Journal of Fourier Analysis and Applications 13.1, pp. 39–70.
- Carl, Bernd (1981). "Entropy numbers, s-numbers, and eigenvalue problems". In: Journal of Functional Analysis 41.3, pp. 290–306.
- Cohen, Albert, Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk (2022). "Optimal stable nonlinear approximation". In: Foundations of Computational Mathematics 22.3, pp. 607–648.

References II

- Dahlke, Stephan, Sven Heuer, Hajo Holzmann, and Pavel Tafo (2022). "Statistically optimal estimation of signals in modulation spaces using Gabor frames". In: IEEE Transactions on Information Theory 68.6, pp. 4182-4200.
 - DeVore, Ronald A. (1998). "Nonlinear approximation". In: Acta numerica 7, pp. 51-150.
 - Donoho, David L. (2000). "High-dimensional data analysis: The curses and blessings of dimensionality". In: AMS math challenges lecture 1.2000, p. 32.
 - Donoho, David L. and Iain M. Johnstone (1998). "Minimax estimation via wavelet shrinkage". In: The Annals of Statistics 26.3, pp. 879-921.
- Feichtinger, Hans G. (1981). "On a new Segal algebra". In: Monatshefte für Mathematik 92, pp. 269-289.
- Feichtinger, Hans G, Karlheinz Gröchenig, and D Walnut (1992). "Wilson bases and modulation spaces". In: Mathematische Nachrichten 155.1, pp. 7–17.

Gröchenig, Karlheinz and Salti Samarah (2000). "Nonlinear approximation with local Fourier bases". In: Constructive Approximation 16, pp. 317-331.

References III

- Hinrichs, Aicke, Iwona Piotrowska, and Mariusz Piotrowski (2008). "On the degree of compactness of embeddings between weighted modulation spaces".
 In: Journal of Function Spaces and Applications 6.3, pp. 303–317.
- Milman, Vitali (1998). "Surprising geometric phenomena in high-dimensional convexity theory". In: European Congress of Mathematics: Budapest, July 22–26, 1996 Volume II. Springer, pp. 73–91.
- Ongie, Greg, Rebecca Willett, Daniel Soudry, and Nathan Srebro (2020). "A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case". In: International Conference on Learning Representations.
- Parhi, Rahul and Robert D. Nowak (2021). "Banach space representer theorems for neural networks and ridge splines". In: Journal of Machine Learning Research 22.43, pp. 1–40.
- (2022a). "On Continuous-Domain Inverse Problems with Sparse Superpositions of Decaying Sinusoids as Solutions". In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5603–5607.

References IV

- Parhi, Rahul and Robert D. Nowak (2022b). "What kinds of functions do deep neural networks learn? Insights from variational spline theory". In: SIAM Journal on Mathematics of Data Science 4.2, pp. 464–489.
- (2023). "Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks". In: IEEE Transactions on Information Theory 69.2, pp. 1125–1140.
- Pisier, Gilles (1981). "Remarques sur un résultat non publié de B. Maurey". In: Séminaire d'Analyse Fonctionnelle (dit "Maurey-Schwartz"), pp. 1–12.
- Siegel, Jonathan W. and Jinchao Xu (2022). "Sharp bounds on the approximation rates, metric entropy, and *n*-widths of shallow neural networks". In: Foundations of Computational Mathematics, pp. 1–57.
 - (2023). "Characterization of the variation spaces corresponding to shallow neural networks". In: Constructive Approximation, pp. 1–24.