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What is the Curse of Dimensionality?

• The phrase the “curse of dimensionality” was (allegedly) coined
by Bellman 1961.

=⇒ Optimization by exhaustive enumeration on product spaces.
=⇒ e.g., Cartesian grid of spacing, say, 1/5 on the unit cube [0, 1]d.

• d = 5 =⇒ 55 ∼ 3, 000
• d = 10 =⇒ 510 ∼ 10, 000, 000
• d = 15 =⇒ 515 ∼ 30, 000, 000, 000

• Problems become intractable even in low (d = 15) dimensions!

• Many modern problems (data science/machine learning) are
very high-dimensional.

Today’s Fundamental Question

Is there a way to avoid the curse of dimensionality?
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More Concretely...

Let f ∈W 1,∞(Ω), where Ω ⊂ Rd is bounded (e.g., Ω = [0, 1]d).
• Approximately optimize f to an error ε > 0.

=⇒ Need (1/ε)d evaluations on a grid. (Bellman 1961)

• Approximate f to an error ε > 0 with, say, wavelets.

=⇒ Need N = (1/ε)d wavelets. (DeVore 1998)

=⇒ The best N -term L2-approximation error rate is N− 1
d .

• Learn/estimate f from noisy measurements, say,

ym = f(xm) + εm, m = 1, . . . ,M.

=⇒ MISE rate from wavelet thresholding is M− 2
2+d . (Donoho and

Johnstone 1998)
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What’s Going On?

• The assumption f ∈W 1,∞(Ω) is too general.

=⇒ W 1,∞(Ω) is too large of a model class.

• In fact, all model classes defined via classical notions of
smoothness (say, s derivatives in Lp) suffer the curse of
dimensionality.

=⇒ The L2-entropy number of the unit ball of Bs
p,q(Ω) ⊂⊂ L2(Ω)

scales as
εN ({f : ∥f∥Bs

p,q
≤ 1})L2 ≍ N− s

d

• How precisely functions can be specified by N -bits.
• Famous theorem of Birman and Solomyak 1967.

Question

Can we design model classes that are immune to the curse of
dimensionality?
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In 1993...

• ...Andrew Barron broke the curse of dimensionality.

• If
∫
Rd(1 + |ξ|)s|f̂(ξ)|dξ <∞, then there exists a shallow

neural network fN with N neurons such that

∥f − fN∥L2(Ω) ≲ N− 1
2

=⇒ This rate is immune to the curse of dimensionality!

A Key Observation

Bs(Rd) = {f ∈ S ′(Rd) :
∫
Rd(1 + |ξ|)s|f̂(ξ)| dξ <∞} is a Banach

space defined by a measure of sparsity in the Fourier domain.
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Breaking the Curse of Dimensionality with Sparsity

• The work of Barron 1993 spurred a lot of interest from the
approximation theory community.
=⇒ Why are Bs functions “immune” to the curse of dimensionality?

• The underlying idea was made precise by Donoho 2000:
=⇒ Let F := F(Rd) be a function space whose elements are

representable by ℓ1-combinations of L∞-atoms, i.e., for every
f ∈ F , there exists a signed (Radon) measure µ such that

f(·) =
∫
Ω

ϕω(·) dµ(ω),

where ∥µ∥M <∞ and {ϕω}ω∈Ω is a dictionary of L∞-atoms.
=⇒ f ∈ F can be approximated (in L2) with N -terms from the

dictionary {ϕω}ω∈Ω at a rate N− 1
2 . (Maurey 1981)

=⇒ Such spaces are called variation spaces.
• The key idea here is sparsity.
=⇒ The M-norm is the continuous-domain analogue of the

ℓ1-norm.
=⇒ Morally, F is an ℓ1-type space and therefore has an interesting

geometry.
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The Geometry of Sparsity in High-Dimensions

• d = 2:

=⇒ Misleading in high-dimensions!

• ℓ1-ball as d becomes large:

=⇒ ℓ1-balls become very “spikey” in high-dimensions.
=⇒ High-dimensional ℓ1-balls have exponentially many tentacles

that grow in length as d becomes large.
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The Geometry of Sparsity in High-Dimensions

Milman 1998 : high-dimensions =⇒ ℓ1-balls look like hedgehogs.

from Gabriel Peyré (@gabrielpeyre) on Twitter 8 / 24



Approximation in Variation Spaces

• Let F be a variation space for the dictionary D := {ϕω}ω∈Ω.
• Define

ΣN := ΣN (D) :=

{
N∑

n=1

cnϕωn : ϕωn ∈ D

}

• The best N-term approximation of f ∈ F from ΣN is

σN (f)L2 := inf
fN∈ΣN

∥f − fN∥L2 .

• This is nonlinear approximation since ΣN is a nonlinear
space:

=⇒ In general for f, g ∈ ΣN , f + g ∈ Σ2N .
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Approximation in Variation Spaces

• From earlier, (Maurey 1981)

σN (f)L2 ≲ N− 1
2 .

• This rate can be improved (Siegel and Xu 2022)

σN (f)L2 ≲ N− 1
2
−α

d .

=⇒ α := α(D) is the smoothness constant of D.

• The improvement α/d captures the efficacy of linear
approximation methods.
=⇒ The best linear approximation rate typically scales as N−α

d .
=⇒ Linear methods necessarily suffer the curse of dimensionality.
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Examples of Variation Spaces

• Bs(Ω) is a variation space for the dictionary

{x 7→ (1 + |ξ|)−se j2πξ
Tx}ξ∈Rd

=⇒ P. and Nowak 2022; Siegel and Xu 2023
=⇒ σN (f)L2 ≲ N− 1

2−
s
d (i.e., α = s).

• R BVk(Ω) (BV-type space defined in the Radon domain) is a
variation space for the dictionary

{x 7→ (wTx− b)k−1
+ }(w,b)∈Sd−1×R

⇕

ReLUk−1 neurons.

=⇒ Ongie et al. 2020; P. and Nowak 2021, 2022, 2023

=⇒ σN (f)L2 ≲ N− 1
2−

2k−1
2d (i.e., α = (2k − 1)/2).

• For these two examples, the rates are sharp. 11 / 24



Modulation Spaces

• Modulation spaces are smoothness spaces defined in the
short-time Fourier transform domain.

• M s
p,q(Rd) is the subspace of S ′(Rd) such that

∥f∥Ms
p,q

:=

(∫
Rd

(∫
Rd

|Vg{f}(x, ξ)|p(1 + |(x, ξ)|)sp dx
)q/p

dξ

)1/q

is finite.

=⇒ Vg{f} is the STFT of f with respect to the window g ∈ S(Rd).
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Modulation Spaces

• Modulation spaces stemmed from the work of Feichtinger 1981.

=⇒ M0
1,1(Rd) is the smallest Segal algebra isometrically invariant

under modulations.

• Gabor/local Fourier/Wilson-type bases are unconditional
bases for the modulation spaces. (Feichtinger et al. 1992)

=⇒ Ms
1,1(Rd) is formed from functions that are ℓ1-combinations of

Gabor atoms.
=⇒ Ms

1,1(Rd) is a variation space!
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Nonlinear Approximation in Modulation Spaces

• Define

ΣN :=

{
N∑

n=1

cnψn : ψn is an element of a Gabor frame

}

• Define the best N-term approximation of f ∈M s
1,1(Rd)

from ΣN as

σN (f)L2 = inf
fN∈ΣN

∥f − fN∥L2

• Again, this is nonlinear approximation.
• Many existing results on approximating M s

p,q(Rd) functions
with Gabor atoms.
=⇒ Gröchenig and Samarah 2000; Borup and Nielsen 2006; Borup

and Nielsen 2007
=⇒ Many unresolved questions as well.
=⇒ Today, we will find several new results in the context of

dimension-free nonlinear approximation rates in modulation
spaces.
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Main Results: Approximation Upper Bound

Theorem (P. and Unser 2023)

Let s ≥ 0. For every f ∈M s
1,1(Rd),

σN (f)L2 = inf
fN∈ΣN

∥f − fN∥L2 ≲ N− 1
2
− s

2d .

Furthermore, the approximant fN that achieves this rate is found by
thresholding the Gabor coefficients of f .

• Abstract result of Maurey 1981, gives the rate N− 1
2 for free.

• With some extra work, we get the improved rate N− 1
2
− s

2d .

=⇒ Improved rate uncovers the role of s.
=⇒ Functions in Ms

1,1(Rd) for large s are smoother and hence
easier to approximate.

• This rate is immune to the curse of dimensionality.
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Main Results: Approximation Lower Bound

Theorem (P. and Unser 2023)

Let s > 0. For every f ∈M s
1,1(Rd),

σN (f)L2 = inf
fN∈ΣN

∥f − fN∥L2 ≳ N− 1
2
− s

2d .

• The requirement s > 0 arises since the result is proved using a
technique based on entropy. (Carl 1981; Cohen et al. 2022)

=⇒ Ms
1,1(Rd) ⊂⊂ L2(Rd) iff s > 0. (Hinrichs et al. 2008)

• Rate achieved by thresholding is sharp: σN (f)L2 ≍ N− 1
2
− s

2d
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Main Results: Suboptimality of Linear Methods

Theorem (P. and Unser 2023)

Let s > 0. Given f ∈M s
1,1(Rd). The best N -term linear

approximation of f cannot achieve an approximation error that
decays faster than N− s

2d .

• Technically, we showed that the linear N -width of the unit ball
in M s

1,1(Rd) scales as ≍ N− s
2d .
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Transform-Domain Sparsity Breaks the Curse?

• Bs: sparsity in the Fourier domain.
=⇒ Nonlinear approximation rate: N− 1

2−
s
d .

=⇒ Linear approximation rate: N− s
d .

• R BVk: sparsity in the Radon domain.
=⇒ Nonlinear approximation rate: N− 1

2−
2k−1
2d .

=⇒ Linear approximation rate: N− 2k−1
2d .

• M s
1,1: sparsity in the STFT domain.

=⇒ Nonlinear approximation rate: N− 1
2−

s
2d .

=⇒ Linear approximation rate: N− s
2d .

Observations

• Sparsity in a transform domain “breaks” the curse of
dimensionality for nonlinear approximation rates.

• Linear approximation methods always “suffer” the curse of
dimensionality.

• Nonlinear methods are required to break the curse.
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A Recipe for Breaking the Curse of Dimensionality

• Explicitly define a variation space F with respect to a
dictionary D.
=⇒ Best N -term nonlinear approximation rate from ΣN (D) is

immune to the curse of dimensionality.
=⇒ Best N -term linear approximation rate from ΣN (D) suffers the

curse of dimensionality.

Caveat

The space F is already constructed with the property that its
N -term approximation rates are immune to the curse. Therefore,
this result can be viewed as boring.

• Define a function space based on different kinds of
smoothness and show that the spaces are equivalent to
certain variation spaces.
=⇒ This was the story for Bs, R BVk, and Ms

1,1.
=⇒ Transform-domain sparsity often seems to work. Can we make

this a precise mathematical statement?
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Open Problems

• Further understanding of what analytic properties of functions
leads to breaking the curse.

• Having a complete story for approximation theory with Gabor
atoms.

=⇒ A complete characterization of the approximation spaces for
Gabor frames.

• Bridging the gap between mathematical statistics and Gabor
analysis.
=⇒ Some preliminary work in this direction: Dahlke et al. 2022.
=⇒ A complete understanding of approximation theory in the Gabor

analysis setting is the first step towards bringing finite data to
the problem.

=⇒ A story similar to wavelets, Besov spaces, and nonparametric
statistics in the Gabor analysis setting would be nice.
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