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Neural Networks Outperform Everything

Deep neural networks are being used in many science and
engineering problems, outperforming state-of-the-art methods.

® image classification,
® speech recognition,
® inverse problems in imaging,

® etc...

Big Caveat

They are poorly understood mathematically.
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Fundamental Questions

® This raises the following fundamental questions:

@ What kinds of functions do neural networks learn?

® Why can neural networks perform well in high dimensional
settings?

© What is the right way to regularize a neural network?

® In this talk we will given (partial) answers to these questions.
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Variational Formulation of Learning

Suppose that f € X, for some Banach space X on R%, and suppose
we have the data {(zm,ym)}2_, C R? x R generated from f.

e Consider the least-squares minimization problem

M
min > lym — f(@n)
=1

fex
m

== This problem is ill-posed.

How do we make this problem well-posed?

Answer

Regularize!
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Regularization

Instead consider the minimization

M

min » l(ym, f(@m))+ Afly
fex — ——
= regularization

data fidelity

where |-|, is a (semi)norm that defines X'.

® )\ > 0 controls the strength of the regularization and the
tradeoff between data fidelity and regularity.

® /(-,-) is a loss/error function.
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Classical Theory: Learning in Hilbert Spaces

Let H be a reproducing kernel Hilbert space (RKHS) and consider
the variational problem

M

g m m >\ 27
J]fcrélﬁ 2 (Y, [(xm)) + Al fll5

where £(-, -) is convex. Then, the solution is unique and takes the
form

fRKHS = Zam m

® k(-,2y,) is the reproducing kernel: (k(-,x,,), f)y = f(Tm).

® This is the well-known representer theorem for kernel
methods. (de Boor and Lynch 1966; Kimeldorf and Wahba 1970)

6/41



Drawback of Hilbert Space Methods

® Hilbert spaces (e.g., L?-Sobolev spaces) cannot efficiently
capture functions that are spatially inhomogeneous or exhibit

singularities.
¢ Hilbert space/kernel methods are linear methods, i.e.,
= T:(y1,...,Yym) — frcus is a linear operator.

— Linear methods are often suboptimal estimators.
— Instead, consider sparse (nonlinear) methods.

This idea of considering sparse methods instead of L?/Hilbert space
methods is classical: wavelet shrinkage, LASSO, compressed sensing,

etc.
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Continuous-Domain Notion of Sparsity

e We have the finite-dimensional ¢*-norm:

|ull, = sup wu'wv.
veR?
[vlloo=1

e \We have the infinite-dimensional ¢*-norm

lullpzy = sup > ulnjoln]
vEco(Z) neZ
H'L’sz(z)zl

® We have the continuous-domain analogue of the /'-norm

HUHM(Rd) = sup  (u,v)
UECo(Rd)
HUHLOO(Rd>:1

—  M(R%) = (Cy(R%))" is the space of finite Radon measures.
= M(R?

) is the continuous-domain analogue of ¢! (not L!(R%)!).

8/41



What is M(R%)?

* “Generalization” of L'(RY):

iso.

= L'RY) = M(R?), ie., for f € L'RY), [|fll s = | flloq-
— The inclusion L*(R?) C M(R?) is strict.

— (- —xo) ¢ LY(RY)

— 8(- — m0) € M(RY) with [5(- — o), = L.

e Recovers the /1-norm since

N
> and(- — @)
n=1

N
= lan| = lal;.
M n=1
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Comparing Hilbert Space vs. Sparse Methods

Consider the following function spaces defined in terms of the
second (distributional) derivative of a function f, D? f.

H?[0,1] = {f : [0,1] = R : D?f e L*0,1]},
BVQ, J={f:0,1] > R: D*fe M[0,1]}.

® The second-order L?-Sobolev space H? is an RKHS.

® The second-order bounded variation space BV? is a Banach
space with a sparsity-promoting norm.
— feBV?0,1] < DfeBV0,1].

e H2[0,1] AN BV?(0,1] & L?[0, 1], where the inclusions are
strict.
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A Learning/Recovery Problem

Suppose we want to learn/recover f : [0,1] — R from the data
Ym :f(xm)+€ma m = 17"'7Ma

where z;, are nicely distributed on [0,1] (e.g., uniformly at random

or equally spaced) and ¢, N'N(O 0?). We will discuss three
techniques for learning this function:

¢ Cubic smoothing spline, a kernel/linear method;
® Linear locally adaptive spline, a sparse/nonlinear method;

® Wavelet shrinkage with Db3 wavelets, a sparse/nonlinear
method.
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Cubic Smoothing Splines

M

- i - 21 \|D2 s
[ sspl ?T()gﬂ% mzzzllym f(zm)| ID* 7|2

e Solution is unique.
* It is a cubic spline with knots at {z,,,})_,.

® Representer theorem in an RKHS.

Carl de Boor and Robert E. Lynch (1966). “On splines and their minimum properties”. In: Journal of
Mathematics and Mechanics 15.6, pp. 953-969.
George S. Kimeldorf and Grace Wahba (1970). “A correspondence between Bayesian estimation on stochastic
processes and smoothing by splines”. In: The Annals of Mathematical Statistics 41.2, pp. 495-502.
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Linear Locally Adaptive Splines

M
fM,Ias € argmin Z |ym - f($m)|2 +A HD2 fHM
F0]-R S _—M

—TV(f)

® Solution set is nonempty, convex, and weak* compact.

® Extreme points of solution set are linear splines with
adaptive knot locations {tn}f:[:l with N < M.

® Full solution set is convex hull of extreme points.
— Solution set is completely characterized by sparse linear splines.

® Representer theorem in a Banach space.

Stephen D. Fisher and Joseph W. Jerome (1975). “Spline solutions to L' extremal problems in one and several
variables” .

Enno Mammen and Sara van de Geer (1997). “Locally adaptive regression splines”.

Michael Unser et al. (2017). “Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV
Regularization” .
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Db3 Wavelet Shrinkage

M

QM,wav € arg min Z’ym fa(xm)| + )‘HaHZl(Z)?
al-]etM(Z) 4

¢ Impose that f, = Za[n]wn.

ne’

® {Yn},cz is ordering of the Db3 wavelet basis on [0, 1].
— Translates and dilates of the mother wavelet.

° fMaan = faM,wav'

David L. Donoho and lain M. Johnstone (1998). “Minimax estimation via wavelet shrinkage”.
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Performance

® Measure the performance of an estimator fa; for f by the
mean-squared error: E| f — fu||2,.

fM,sspI fM,wav fM,Ias

fe HQ[O, 1] M—45 pr—AB pp—4/5

feBV0,1] | M4 M5 MAS

® Remarks...

—  The minimax rates for H2[0,1] and BV?[0,1] are M4/,

= The smoothing spline estimator (or any linear estimator) is
suboptimal for BV? functions. (Donoho and Johnstone 1998)

— No estimators can perform better than the (nonlinear) wavelet
shrinkage or locally adaptive spline estimators for BV?
functions.
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An Example

Generate noisy data {(zm, y,,)}2_, from f € BV2[0,1]:
Ym :f(l'm)+5m, m=1,....,.M

[ ¢ H?[0,1].
e f is spatially inhomogeneous.
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Linear Methods: Cubic Smoothing Splines

Figure: cubic smoothing spline, large A

Figure: cubic smoothing spline, small A

® Smoothing spline either oversmooths high variation portion of
data or undersmooths low variation portion of data.

® Smoothing splines cannot adapt to the inhomogeneity of the
underlying function.
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Nonlinear Methods: Wavelets and Adaptive Splines

Figure: Db3 wavelet shrinkage

Figure: Linear locally adaptive spline

® Wavelet shrinkage and locally adaptive spline estimators
automatically adapt to the inhomogeneity of the underlying
function.
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Linear Splines and the ReLU

e If fis a linear spline, we have that

N
D* f =) and(- — ty).
n=1

® f can be written as

N
f(z) = Z an ReLU(z — t,) + c1x + ¢
n=1
= D?ReLU = .
® The RelLU is the building block of linear splines!
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Shallow Neural Networks

Shallow neural networks are are functions f : R — R

that can be written as //

>> |

iy

N
f(@) =v p(Wz —b) = Zvnp(wlw = bn),
n=1

N\

7
///////// 7

where v, € R, w,, € R%, b, € R, and p = ReLU.

Observation
When d = 1, we have

N
f'v,w,b,c(x) = Z vnp(wnx - bn) +cixr+ ¢y

n=1

This is a linear spline with IV knots!
e D2 fv,w,b,c = 27]:7:1 vnlwn|5(' - bn/wn)
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Observation

The solutions to the neural network training problem

min Zzym,fe Tm) +AZ!vn|\wnl

=(v,w,b,c)

ﬁ,—/
=TV?(fo)

solve the linear locally adaptive spline variational problem

M
. 2
i n;f(ym,fa(xm)) +ATVE(f)

solongas N > M.
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Neural Network Training

® Neural networks are often trained with weight decay:

M A
min Z UYm, fo(xm)) + 5 Z’U"F + |wn)?
n=1

0:(11,11)71)70) m=1

® For any 7 > 0, the mapping (vp, wy) — (v, /7, ywy) does not
change the function fg since the ReLU is 1-homogeneous.
= At the solution |v,| = |wy].

® Training a neural network with weight decay is equivalent to

min Z l ymafO xm + /\Z|Un||wn‘

=(v,w,b,c)

® This observation was, first made in the 1990s. (Grandvalet 1998)
— Popularized recently. (Neyshabur et al. 2015)
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Neural Networks and Locally Adaptive Splines

Shallow, univariate ReLU networks trained with weight decay are
linear locally adaptive splines. (Savarese et al. 2019)

Observations (P. & Nowak 2020)

® Shallow, univariate ReLU networks learn functions
in the Banach space BV2.

® Shallow, univariate ReLU neural networks need to

be critically parameterized or overparameterized
(N > M suffices).

Rahul Parhi and Robert D. Nowak (2020). “The Role of Neural Network Activation Functions”. In: IEEE Signal
Processing Letters 27, pp. 1779-1783. por: 10.1109/LSP.2020.3027517.
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Shallow Multivariate Neural Networks

* In the univariate case, D? is a sparsifying transform for Rel.U
neurons
D? p(wz — b) = Dwu(wz — b)
= w?§(wz — b)
= |w|d(x — b/w).

® Multivariate neurons take the form x +— p(w'x — b), w € R,
beR.

= These are ridge functions.

Is there an operator that sparsifies a multivariate neuron?

Answer

Yes, and it involves the Radon transform.
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The Radon Transform

® Ridge functions (plane waves) are univariate functions
extended outward in all other dimenions. Consider
ReLU(z) = 4.

e We can use the Radon transform of a function f : R — R,

Z{f} a,t) = /Rd f@)o(a'x —t)dz, (a,t)cST!xR,

to “extract” the underlying univariate function to extend
results for univariate functions to multivariate ridge functions.
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The Sparsifying Operator

® RelLU Neuron

= plwg(-) —bo), (wo,bp) €S xR .

e Laplacian of neuron

— A{p(wg (-) = bo)} = d(w( (-) — bo)
.

* Filtered Radon transform of Laplacian of neuron?
— (KT 2 A){p(w] () = bo) } (e, t) = 6 ((ex,t) — (w0, bo))-

® This operator has gained popularity due to the seminal work of
Ongie et al. (2020).

LKurkovs et al. 1997; Ongie et al. 2020; P. & Nowak 2021; Unser 2022
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“Native Space” for Shallow Neural Networks

What would be a multivariate analogue of BV?(R)?

Answer

ZBV?(R?), the second-order Radon-domain BV space.

ZBVA(RY) = {f RS R: ZTVA(f) < oo}

© BTV(f) = K" % Af|a
= TV*(f) = |D* fllm-
® When d =1,
— ZBV*(R?Y) = BV%(R) and ZTV?(-) = TV?(-).
* % BV?*(R?) is a Banach space. (P. & Nowak 2021)
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A Representer Theorem for Shallow Neural Networks

Theorem (P. & Nowak 2021)

Consider the variational problem
M

freLu € argmin Y L(ym, f(Tm)) + AR TV?(f),
fEZBVZ(RY) 1,1

® Solution set is nonempty, convex, and weak® compact.

® Extreme points of solution set take the form

freLU(Z Zvnp :B—b )+CT€B+60, N <M

® Full solution set is convex hull of extreme points.
= Solution set is completely characterized by ReLU networks.

Rahul Parhi and Robert D. Nowak (2021). “Banach space representer theorems for neural networks and ridge
splines”. In: Journal of Machine Learning Research 22.43, pp. 1-40.
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Neural Network Training

The solutions to the neural network training problem

M A N
min Y (ym, fo(@m)) + 5 D lvnl® + [[wall3
m=1 n=1

solve the variational problem

e ibmn Z o Flon)) + AR TVHD).

so long as N > M.

Shallow, multivariate ReLU networks learn functions in the Banach
space Z BV?(RY).

Rahul Parhi and Robert D. Nowak (2021). “Banach space representer theorems for neural networks and ridge
splines”. In: Journal of Machine Learning Research 22.43, pp. 1-40.
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Deep Neural Networks

Consider the cascade of % BV? spaces:
A BV3eep = {f =fBo...ofM . 4O ¢ %’BVQ(R‘“—I;RW)}

Theorem (P. & Nowak 2022)

There exists a solution to the variational problem

M L
min > L(ym, f(@m)) + A DR TV (D),

2
fe% BVdeeP m=1 /=1

® that takes the form a deep RelLU neural network.

= with L hidden layers
— linear bottlenecks
— sparse solutions (widths O(M?))

Rahul Parhi and Robert D. Nowak (2022b). “What kinds of functions do deep neural networks learn? Insights
from variational spline theory”. In: SIAM Journal on Mathematics of Data Science 4.2, pp. 464-489.
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What is % BV?*(Q)?
° Let Q= {x eR?: ||x| <1}. Then,
ABV*(Q):={f: Q= R: Ig € ZBV*(RY)s.t. g|, = f}

* Every f € ZBV?(Q) admits an integral representation
f(x) = / plw e —b) du(w,b) + ¢'x + ¢
S4-1x[-1,1]

— P. & Nowak 2022

® Such integral representations have been studied for a number
of years and are referred to as the variation spaces of shallow

neural networks. (Kurkova and Sanguineti 2001; Mhaskar 2004; Bach
2017; Siegel and Xu 2021a)

® Our work provides an analytic characterization of these
variation spaces.
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Neural Spaces

® The spectral Barron spaces %°(R?) are defined via the norm

~

11l s ey = N+ -1l2)* F ()l = /Rd(l + [lwll2)’] f(w)] dw

= Proposed in the seminal work of Barron on the approximation
properties of shallow neural networks. (Barron 1993)

® On a bounded domain €2, we have for any € > 0,
HIPH2He(Q) < #2(Q) < ZBVA(Q) < L*(Q)
= H*(Q) is the sth-order L2-Sobolev space on Q.

— Klusowski and Barron 2018; Xu 2020; Siegel and Xu 2021; P.
and Nowak 2022
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Approximation Properties of %7 BV?*(Q)

® |t is well-known how to approximate integrals of the form
/ p(w™z — b) du(w.b)
Sd—1x[—1,1]

=—> Maurey and Pisier 1981; Barron 1993; Matousek 1996; Siegel
and Xu 2021

* Given f € ZBV?(), there exists a shallow neural network fy
with N neurons such that

If = fullpe SN"273 S N3

~

= This rate does not grow with the input dimension d.
— Shallow neural networks break the curse of dimensionality.

e Compare with approximation in H2[0,1]%. The best N term

o o2 . .
L?-approximation rate is N4 (use a truncated Fourier series),
which suffers the curse of dimensionality.
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Estimation Properties of %7 BV?*(Q)

* Given f € ZBV?(Q), suppose we observe
ym:f(wm)+5ma m:]-a"'aM7

where {mm}%zl C Q are nicely distributed and {5m}7]\:{:1 are
i.i.d. white noise.
® Any solution to the neural network training problem

M

fm € argemlnzwm fo(@m)| Z’Un| + [[wnl3

m=1

satisfies
9 _ 43 1
Elf = fulze S M 72088 S M™2
= This rate does not grow with the input dimension d.

== This is the minimax rate. (P. & Nowak, 2021)
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Data Fitting and Extrapolation

samples (red) - ] ReLU net +
of 2D function thin-plate spline ReLU NTK weight decay

LERne
, .
d

neural networks learn and extrapolate very differently than classical
multivariate estimation techniques and kernel methods in general

Linear methods necessarily suffer the curse of dimensinality when estimating
ZBV?3(Q) functions from data.

e Minimax lower bound for linear methods: M~ %3 . (P. & Nowak, 2022)
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% BV?*(Q) is a Mixed Variation Space

* Functions in ZBV? can be very smooth in all directions (e.g.,
in the Sobolev space H%/2t+2+e,

e Functions in % BV? can be very nonsmooth in all but a few
directions (e.g., a ridge function with a piecewise linear profile).

® Such spaces are referred to as “mixed variation” spaces.
(Donoho 2000)
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The Fundamental Questions

® \What kinds of functions do neural networks learn?

— RelLU networks trained with weight decay are optimal solutions
to variational problems over % BV?-type Banach spaces.

® Why can neural networks perform well in high dimensional
settings?
— Dimension-free approximation and estimation rates.

® What is the right way to regularize a neural network?
—> Radon-domain total variation <= weight decay.
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Concluding Remarks

® The ZBV? function space perspective of neural network
provides a concrete framework to compare neural networks to
classical data-fitting techniques such as kernel methods.
® Many researchers study infinite-width neural networks.
= Our representer theorems say there is no need to consider
networks of arbitrary width.
e Skip connections are often used in network architectures.
— They are a natural by-product of the variational formulation of
the learning problem.
® One paradigm for understanding neural networks is through the

neural tangent kernel (i.e., assuming the problem is over a
Hilbert space).

—  ZBV? is a non-Hilbertian Banach space.
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