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The World Is Now Based on Neural Networks
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Large language models (LLMs) like
generative pre-trained transformers (GPT)
have taken the world by storm.

o ChatGPT
e (Claude

Do we even understand why
neural networks work?

(PDF] Improving language understanding by generative pre-training
A Radford, K Narasimhan, T Salimans, | Sutskever

Natural language understanding comprises a wide range of diverse tasks such as textual
entailment, question answering, semantic similarity assessment, and document ...
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Magnetic Resonance Imaging (MRI)

Accelerating MRI scans is one of the principal outstanding problems
in the MRI research community.

Magnetic Resonance in Medicine 58:1182-1195 (2007

Sparse MRI: The Application of Compressed Sensing
e Early approaches were based R L
O n CO m pressed Se n S| n g . Michael Lustig,' David Donoho,? and John M. Pauly’

Candes et al. (2006)

—> Theoretical guarantees of stability. Donoho (2006)
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e Modern approaches are based Results of the 2020 fastMRI Challenge for
. i Machine Learning MR Image Reconstruction
O n d ee p Iea r n I n g a n d m a SS I Ve Matthew J. Muckley™, Member, IEEE, Bruno Riemenschneider, Alireza Radmanesh™,

Sunwoo Kim"™, Member, IEEE, Geunu Jeong", Jingyu Ko, Yohan Jun*, Hyungseob Shin,
Dosik Hwang™, Mahmoud Mostapha, Simon Arberet™, Dominik Nickel,
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—> Almost no theoretical guarantees.

Can we trust deep-learning-based methods?



Results of the 2020 fastMRI Challenge

Ground
Truth

DNN-Based
Reconstruction

Al-generated hallucinations identified by radiologists as false vessels.

Muckley et al. (2021, IEEE Transactions on Medical Imaging)



Today’s Talk

Understanding analytic properties of trained neural networks.

~ parameterized by a vector 8 € R
L L (w) of neural network weights

.o N
Neural network training problem for the data {(x,,yn)}, ;-
al A
: 2 Tikhonov
min T — 10|, <
OcRP E(yn’ f@( n)) T 9 H ||2 regularization
n=1 X , “weight decay”
data fidelity regularization

We will be agnostic to the optimization algorithm.



Joint Work With...

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Joe Shénouda Kangwook Lee ob Nwak

MLR Variation Spaces for Multi-Output Neural Networks:
J Insights on Multi-Task Learning and Network Compression

Joseph Shenouda, Rahul Parhi, Kangwook Lee, Robert D. Nowak; 25(231):1-40, 2024.



Weight Decay in Neural Network Training
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Gradient descent update on 6;
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step size I
“learning rate” GD update on .Z

Hanson and Pratt (1988, NeurlPS)
Krogh and Hertz (1990, NeurlPS)



Neural Balance in Deep Neural Networks

mathematical expression

/ for a single ReLU neuron

v v(w'z), € RP

T

Rds 2 w

weight decay in training
Is equivalent to adding
|lwl[3 + [|[v]|3 to the

RelLU activation training objective

Neural Balance Theorem

If a DNN is trained with weight decay, then the
2-norms of the input and output weights to each
ReLU neuron must be balanced.

|lwll2 = [lv][2

Yang, Zhang, Shenouda, Papailiopoulos, Lee, and Nowak (2022)
P. and Nowak (2023)



Neural Balance

The RelLU activation is homogeneous

v(w'z), = v(hw'z),, forany > 0.

At a global minimizer of the weight decay objective, ||v]|s = ||w]|2.

Proof. The solution to

min |7 w2 + [[Hwll

>0
is 7 = /llvll2/|wll2:

|v]13 + [[wl]3
2

At a global minimizer, = ||v]|2||w]|2.

Grandvalet (1998, ICANN)
Neyshabur et al. (2015, ICLR Workshop)
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Secret Sparsity of Weight Decay

N\ 77 :
NV weight decay
\\/
Y

min ZC Yn, Jo(Tn)) + = ZH’UkHQ T Hwk’Hz

0={(wk,vk)} =y n=1

path norm

min Z»C yn7f9 ajn _|_)‘ZHUI€H HwkHQ

0={(wr,vk)} =1 1

multltask lasso

Z»C Yn, Jo(Tn) ‘|‘)\ZHUI<:H2

0= {(wkavk)}kz 1 n—1
|wg|l,=1

— ka(wgw)+ 0 = {(wkv’vk)}é{zl

Rebalancing
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Path-Norm and Neural Banach Spaces

K
V=1 f(z) = Y vp(wim)y s vp € RY wp e R K €N
k=1

finite-width

O
The path-norm is a valid norm on V: vector-valued
networks

K
[fllv =D _llvkllsllwgll,
k=1

O
The “completion” of V (in an appropriate sense) is a Banach space.
It is the Banach space V of all functions of the form vector-valued

/ measure
f@)= [ (o). dvw)
\

Barron (1993, IEEE TIT) “output weights”
Bach (2017, JMLR)

Ongie et al. (2020, ICLR)

Shenouda, P., Lee, and Nowak (2024, JMLR)
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Path-Norm and Vector-Valued Measures

fev., flz)— / (wz), dv(w), |fl,

gd—1
The measure v € M(R*; R”) is vector-valued. Z8
n UV —
Iy = Vlonc= sup ) [w(4)l, VD
d—1 n
S =U;=1 A i=1 - T
neN 1/

n D

2
D3 b3
ST =Ur As i=1 \ j=1
neN

K K
fo(x) =) wvi(wiz)r = |folly = > _llvklls/lwell,
k=1 k=1

) is a vector-valued variation space
Shenouda, P., Lee, and Nowak (2024, JMLR) 13



A Representer Theorem

Theorem (Shenouda, P., Lee, and Nowak 2024)

For any data set {(x,,y,)}._, and lower semicontinuous £(-, -),
there exists a solution to
N

n> J (Tn)) + A , A>0,
nin L(Yn, [(2n)) + Al fllv >0

n=1

that admits a representation of the form

fReLU( Z (w,x), |K < N?|.

k=1 sparse solution

The bound is independent of the input and output dimensions.

Carathéodory’s theorem would predict a bound of ND + 1.

Shenouda, P., Lee, and Nowak (2024, JMLR) 14



Weight Decay Promotes Neuron Sharing

V-norm regularization

ol <—
min (J(f) = Z ,C(yn, f(a:n)) —+ )\HfV) path-norm regularization

fev —
weight decay

Neuron Sharing Theorem (Shenouda, P., Lee and Nowak 2024)

Consider a vector-valued neural network (with unique input weights)

@)=Y op(wla),.
k=1

here exists § > 0 such that, if Z(wi,ws) < 6, then the neural
network that shares neurons has a strictly smaller objective value.

That i1s,

~

f(x) = f(x) — vi(wiz) + 01 (w; x)
satisfies J(f) < J(f).

Shenouda, P., Lee, and Nowak (2024, JMLR)



The Structured Sparsity of Weight Decay

dense weights sparse weights sparse neurons
K
D 7
(@) o (@)
fa(e) 0177/“%\ fal@)
: (=
fo(z)

Q
S

O(KVD)
Weight decay favors variation in only a few directions (sparse weights)

Weight decay favors outputs that “share” neurons (sparse neurons)
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What Does All of This Mean for
Learning With Deep Neural Networks?
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Layers of Vector-Valued Shallow Networks

Deep Neural Networks are Layers of Shallow Vector-Valued Networks

18



Tight Bounds on Widths

Consider one RelLU layer within a trained deep neural network
with weight decay
to a global minimizer

() P = {¢n}£¥:1

S
L e N push the magnitude

o
{witi_, ¢ {velie,

multitask lasso

At each layer, the weight =
YEr, THE WIS min Y |vgle st €=V
decay solution minimizes v, VK

k=1 f—1

Shenouda, P., Lee, and Nowak (2024, JMLR)
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Tight Bounds on Widths

/\(I):{qsn 7];[:1 K
min = Y [vgllz st ¥ =V

foedizy 15

v Low-rank data embeddings have been
observed empirically by Huh et al. (2022).

Layer Width Theorem (Shenouda, P., Lee and Nowak 2024)

Let @ denote the post-activation features and ¥ denote the neuron
outputs of any RelLU layer in a trained DNN (minimizes the
weight decay objective). Then, there exists a representation with

K < rank(CI)) rank(\Il) < N2 Bound of Jacot et al. (2022): N(N + 1).

neurons. The representation can be found by solving a convex
multitask lasso problem.

Shenouda, P., Lee, and Nowak (2024, JMLR) 20



Application: Principled DNN Compression

VGG-19 trained with weight decay on CIFAR-10.
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Theory: There exists a representation with

< rank(®) rank(¥) ~ 10 - 10 = 100 neurons.

original network  compressed network

active neurons 9512 47 10x compression!
test accuracy  93.92% 93.88% no change in
train loss 0.0104 0.0112 performance!

Shenouda, P., Lee, and Nowak (2024, JMLR) 21



