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The World Is Now Based on Neural Networks
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Large language models (LLMs) like
generative pre-trained transformers (GPT)
have taken the world by storm.

o ChatGPT
e (Claude

Do we even understand why
neural networks work?

(PDF] Improving language understanding by generative pre-training
A Radford, K Narasimhan, T Salimans, | Sutskever

Natural language understanding comprises a wide range of diverse tasks such as textual
entailment, question answering, semantic similarity assessment, and document ...
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Magnetic Resonance Imaging (MRI)

Accelerating MRI scans is one of the principal outstanding problems
in the MRI research community.

Magnetic Resonance in Medicine 58:1182-1195 (2007

Sparse MRI: The Application of Compressed Sensing
e Early approaches were based R L
O n CO m pressed Se n S| n g . Michael Lustig,' David Donoho,? and John M. Pauly’

Candes et al. (2006)

—> Theoretical guarantees of stability. Donoho (2006)
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e Modern approaches are based Results of the 2020 fastMRI Challenge for
. i Machine Learning MR Image Reconstruction
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Sunwoo Kim"™, Member, IEEE, Geunu Jeong", Jingyu Ko, Yohan Jun*, Hyungseob Shin,
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—> Almost no theoretical guarantees.

Can we trust deep-learning-based methods?



Results of the 2020 fastMRI Challenge

Ground
Truth

DNN-Based
Reconstruction

Al-generated hallucinations identified by radiologists as false vessels.

Muckley et al. (2021, IEEE Transactions on Medical Imaging)



Today’s Talk

Understanding analytic properties of trained neural networks.

~ parameterized by a vector 8 € R
L L (w) of neural network weights

.o N
Neural network training problem for the data {(x,,yn)}, ;-
al A
: 2 Tikhonov
min T — 10|, <
OcRP E(yn’ f@( n)) T 9 H ||2 regularization
n=1 X , “weight decay”
data fidelity regularization

We will be agnostic to the optimization algorithm.



Joint Work With...
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Weight Decay in Neural Network Training
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Neural Balance in Deep Neural Networks

mathematical expression

/ for a single ReLU neuron

v v(w'z), € RP

T

Rds 2 w

weight decay in training
Is equivalent to adding
|lwl[3 + [|[v]|3 to the

RelLU activation training objective

Neural Balance Theorem

If a DNN is trained with weight decay, then the
2-norms of the input and output weights to each
ReLU neuron must be balanced.

|lwll2 = [lv][2

Yang, Zhang, Shenouda, Papailiopoulos, Lee, and Nowak (2022)
P. and Nowak (2023)



Neural Balance

The RelLU activation is homogeneous

v(w'z), = v(hw'z),, forany > 0.

At a global minimizer of the weight decay objective, ||v]|s = ||w]|2.

Proof. The solution to
min {7 Vil + [[yw 2

>0
is 7 = /llvll2/|wll2:

|v]13 + [[wl]3
2

At a global minimizer, = ||v]|2||w]|2.

Grandvalet (1998, ICANN)
Neyshabur et al. (2015, ICLR Workshop)
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Secret Sparsity of Weight Decay
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Path-Norm and Neural Banach Spaces

||K
!
V= f(xX)=  viw!x)s 1 vig ! R?,we! RYOK I N
k=1 -
| Pnite-width
The path-norm is avalid norm on V: vector-valued
networks
!K
fly = Lt S Twe!
k=1

The OcompletionO of (In an appropriate sense) Is a Banach sp
It Is the Banach spac&/ of all functions of the form vector-valued

_ /' measure
f(X) = (w'x): dl (w).

5! ~

Barron (1993, IEEE TIT) Joutput weights
Bach (2017, JMLR)

Ongie et al. (2020, ICLR)

ShenoudaP., Lee, and Nowak (2024, JMLI
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Path-Norm and Vector-Valued Measures

f1V, f(x)=
!

The measured ! M (R%:RP) is vector-valued.
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V Is a vector-valued variation spe

ShenoudapP., Lee, and Nowak (2024, JMLI
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A Representer Theorem

Theorem (Shenoudal., Lee, and Nowak 202

For any data se{ (Xn,Yn)}N-; and lower semicontinuouk (3 9,
there exists a solution to
!N
mio L(yn,f(Xy)+ Hifly, 1 >0,
n=1
that admits a representation of the for
!K
freru (X) = wi(wpx): |[K<N 4.

k=1 Sparse solutic

The bound isindependent of the input and output dimension

CaratheodoryOs theorem would predict a bount Df + 1.

ShenoudapP., Lee, and Nowak (2024, JMLI 14



Weight Decay Promotes Neuron Sharing

- V-norm regularization
N 1
r

][nin J(f) = L(yn,f(Xp))+ 1fly path-norm regularizatio
IV L

n=1 _'
weight decay

Neuron Sharing Theorem (Shenouda,, Lee and Nowak 202

Consider a vector-valued neural network (with unique input weig
!K
f(X)=  Vi(wpX)+.
k=1
here existd > 0 such that, if! (wq,w>y) < !, then the neural
network that shares neurongas a strictly smaller objective vali
That Is,

fF(x)=f(x)! vi(w{x)+ Vi(wlx)
satispes] (f7) < J (f).

ShenoudapP., Lee, and Nowak (2024, JMLI



The Structured Sparsity of Weight Decay

dense weight sparse weight sparse rneuror
K
~ D
e fa(x)
S f2(x)
7 o)
O(K " D) O(D) O( D)

Welight decay favors variation in only a few directions (sparse wel

Weight decay favors outputs that OshareO neurons (sparse ne
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What Does All of This Mean for
Learning With Deep Neural Networks?
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Layers of Vector-Valued Shallow Networks

Deep Neural Networks arkayers of Shallow Vector-Valued Networ
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Tight Bounds on Widths

Consider one RelLU layer withinteained deep neural netwol

with weight decay
to a global minimize

= { n}r'?':l

o

' / 4 /
= =
7

7 7

L N N push the magnitud
Xn g o R ! = {!a}no of wy into vy

W, Y v
multitask lass:
1K
min lvi!ls, st | =V".
{Vk}:((:]_ k=1

At each layer, the weigl
decay solution minimize

ShenoudapP., Lee, and Nowak (2024, JMLI
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Tight Bounds on Widths

. \I - {! n}rl\llzl !K
A min Lyl st I =V7E,
K
- 7= {Vk } k=1 k:].
xnooFii o L = {l g
/ . Low-rank data embeddings have been

observed empirically biyluh et al. (2022)

Layer Width Theorem (Shenoudd&., Lee and Nowak 202

Let ! denote the post-activation features arid denote the neurc
outputs of any RelLU layer in rained DNN (minimizes the
weight decay objective). Then, there exists a representation wit

K | rank(! )rank(" ) | N2 Bound ofJacot et al. (2022) N(N +1).

neurons. The representation can be found by solvingoavex
multitask lasso problem.

ShenoudapP., Lee, and Nowak (2024, JMLI



Application: Principled DNN Compression

VGG-19 trained with weight decay on CIFAR-
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Theory: There exists a representation w

Pnal ReLU laye
K =512 neuron:

output dimensio
D =10

I rank(! )rank(" )" 10410 = 100 neurons

original network compressed networ

active neurons 512 47
test accuracy  93.92% 93.88%
train loss 0.0104 0.0112

10l compressiol

no change i
performance

ShenoudapP., Lee, and Nowak (2024, JMLI
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