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Continuous-Domain Linear Inverse Problems

• A fundamental problem in science and engineering is to
reconstruct a continuous-domain signal f : Rd → R from
measurements.

yn = 〈hn, f〉+ εn, n = 1, . . . , N

• H{f} = (〈h1, f〉, . . . , 〈hN , f〉) ∈ RN symbolizes the linear
measurement process.

• ε = (ε1, . . . , εN ) ∈ RN are perturbation or noise terms,
typically zero-mean random variables.

• y = (y1, . . . , yN ) ∈ RN denotes the (possibly noisy) data.

Remark

This is an ill-posed inverse problem.
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Many Real-World Problems are Inverse Problems

y = H{f}+ ε

• Medical imaging

=⇒ Image the interior of a body.
=⇒ e.g., in MRI, H corresponds to Fourier-domain measurements.

• Statistics/supervised machine learning

=⇒ Learn f from a dataset {(xn, yn)}Nn=1 such that f(xn) ≈ yn.
=⇒ hn = δ(· − xn) for some xn ∈ Rd.

• Many other real-world problems...
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Synthesis Formulation

• Assume a priori that f can be synthesized by a superposition
of atoms from some dictionary, i.e.,

f =
∑
k∈Z

αkϕk,

where {ϕk}k∈Z is a dictionary of atoms, e.g.,
=⇒ wavelets (Donoho, 1998)

• The solution to the inverse problems is synthesized from
coefficients that solve

min
α∈`p(Z)

∥∥∥∥∥y −H

{∑
k∈Z

αkϕk

}∥∥∥∥∥
2

2

+ λ‖α‖pp,

• The choice of p = 2 has classically been the common choice,
the last few decades have shown that sparsity (p = 1) plays a
key role in signal reconstruction. (Bruckstein, 2009)
=⇒ Supported by the theory of compressed sensing. (Candès, 2006)
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Analysis/Variational Formulation

• The solution to the inverse problem is a solution to the
variational problem

min
f∈X ′

‖y −H{f}‖22 + λ‖f‖pX ′ ,

• X ′ is an appropriate native space that models the signals to be
reconstructed.

• ‖·‖X ′ is the norm that defines X ′.
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Sparse Fourier Reconstruction

• In this work we consider the analysis formulation for sparse
signal reconstruction.

• Consider the spectral Barron spaces ℬs(Rd), s ≥ 0, which
are Banach spaces defined by the norm

‖f‖ℬs(Rd) = ‖(1 + ‖·‖2)
sF (·)‖M.

=⇒ F (ξ) =

∫
Rd

f(x)e− j2πξTx dx.

=⇒ The M-norm is a “generalization” of the L1-norm that can also
be applied to distributions such as the Dirac impulse. Morally,

‖f‖ℬs(Rd) =

∫
Rd

(1 + ‖ξ‖2)
s|F (ξ)|dξ.

=⇒ The M-norm is the continuous-domain analogue of the
sparsity-promoting `1-norm.

=⇒ These spaces were first studied in the context of approximation
theory with neural networks. (Barron, 1993)
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Sparse Fourier Reconstruction

Representer Theorem (P. & Nowak, 2022)

Consider the analysis formulation for signal reconstruction where the
native space is ℬs(Rd). Furthermore, suppose that the
measurement operator H is weak∗ continuous on ℬs(Rd). Then,

V = argmin
f∈ℬs(Rd)

‖y −H{f}‖22 + λ‖f‖ℬs(Rd),

is nonempty, convex, and weak∗ compact.
The extreme points of V are given by functions of the form

fsparse(x) =

K∑
k=1

αk(1 + ‖ξk‖2)
−se j2πξ

T
kx,

where ξk ∈ Rd, k = 1, . . . ,K, and K ≤ N . The weak∗ closure of
the convex hull of these extreme points is the full solution set.
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• Why is this kind of result called a representer theorem?

=⇒ The solution set to the optimization problem is completely
characterized by functions with a finite-dimensional
representation in terms of certain atoms.

• The term representer theorem is commonly used when talking
about kernel methods in machine learning.

=⇒ The notion of a representer theorem is much more general and
can be applied to many problems about convex optimization in
Banach spaces. (Unser 2021)
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Sparse Fourier Reconstruction

fsparse(x) =

K∑
k=1

αk(1 + ‖ξk‖2)
−se j2πξ

T
kx,

• Solution set of is completely characterized by sparse
superpositions of decaying sinusoids.
=⇒ Atoms of solutions: (1 + ‖ξk‖2)−se j2πξ

T
kx.

=⇒ As a function of the frequency variable ξk, the atoms are
decaying sinusoids.

=⇒ ‖fsparse‖ℬs(Rd) = ‖α‖1.

=⇒ Larger s penalizes high-frequencies due to decay factor
(1 + ‖ξ‖2)−s.

• Solutions have sparse Fourier transforms.
=⇒ Fourier transform is superposition of weighted impulses.
• Condition of weak∗ continuity of the measurement operator is

satisfied by convolution operators whose Fourier transforms
decay as ‖ξ‖t2, where t > −s, as ‖ξ‖2 →∞,
=⇒ Relatively mild condition.
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Numerical Examples

‖f‖ℬs(Rd) =

∫
Rd

(1 + ‖ξ‖2)
s|F (ξ)| dξ.

• Consider digital images (d = 2).

=⇒ f  f , where f is an N ×N digital image.

• Replace continuous Fourier transforms with discrete Fourier
transforms.

=⇒ ‖f‖ℬs(R2)  ‖f‖bs

=⇒ ‖f‖bs :=
∑
k1,k2

1 +

√∣∣∣∣k1N
∣∣∣∣2 + ∣∣∣∣k2N

∣∣∣∣2
s

|F [k1, k2]|.

=⇒ F [k1, k2] denotes the DFT of f .
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Numerical Examples

We will compare the proposed regularization approach with classical
Tikhonov regularization.

• Proposed approach: min
f
‖y −Hf‖22 + λ‖f‖bs

• Tikhonov regularization: min
f
‖y −Hf‖22 + λ‖f‖22

• H will correspond to convolution with a Gaussian followed by
downsampling.

• ε will be i.i.d. N (0, 1) noise.

• s = 1.
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Toy Problem

y = Hf + ε

512× 512 image DFT 128× 128
measurement
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Sparse Fourier Reconstruction
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Tikhonov Reconstruction
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Comparison

Proposed
#coeffs = 67

Tikhonov
#Fourier coeffs = 16384
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Cameraman

512× 512 image 128× 128 measurement
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Cameraman

Proposed
#coeffs = 180

Tikhonov
#Fourier coeffs = 16384
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Concluding Remarks

• Proposed new regularization procedure for sparse signal
reconstruction in the continuous-domain, adding to a long
line of work in this area (Vetterli, 2002), (Eldar, 2005), (Adcock, 2016), (Candés, 2014)

=⇒ Proved a representer theorem for the spectral Barron spaces
ℬs(Rd).

• Future work:

=⇒ Comparison of this new approach with existing approaches for
sparse signal reconstruction, e.g., wavelet shrinkage and total
variation methods.

=⇒ Quantify conditions for exact recovery for signals in
f ∈ℬs(Rd) from measurements.
When s = 0 the problem has been solved under the name
“off-the-grid” compressed sensing. (Tang, 2013), (Candés, 2014)
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