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Deep Neural Network Architectures

The Evolved Transformer

David So, Quoc Le, Chen Liang Proceedings of the 36th International Conference on Machine
Learning, PMLR 97:5877-5886, 2019.
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Very deep convolutional networks for large-scale image recognition
K Simonyan, A Zisserman

In this work we investigate the effect of the convolutional network depth on its accuracy in the
large-scale image recognition setting. Our main contribution is a thorough evaluation of ...
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Rectified Linear Unit (RelLU)
ReLU(t) = max{0,t} =t

-+ weight decay in training




Neural Balance in Deep Neural Networks

mathematical expression

/ for a single ReLU neuron
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weight decay in training

Is equivalent to adding

|lwl|3 + [[v]|3 to the
RelLU activation training objective

Neural Balance Theorem

If a DNN is trained with weight decay, then the
2-norms of the input and output weights to each
RelLU neuron must be balanced.

|lwll2 = [lv][2

P. and Nowak (2023, IEEE Signal Processing Magazine)



Neural Network Training
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Neural Balance

The RelLU activation is homogeneous

v(w'z), = v(hw'z),, forany > 0.

At a global minimizer of the weight decay objective, ||v]|s = ||w]|2.

Proof. The solution to

min |7 w2 + [[Hwll

>0
is 7 = /llvll2/|wll2:

|v]13 + [[wl]3
2

At a global minimizer, = ||v]|2||w]|2.

Grandvalet (1998, ICANN)
Neyshabur et al. (2015, ICLR Workshop)



Secret Sparsity /Implicit Parsimony of Weight Decay
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Secret Sparsity /Implicit Parsimony of Weight Decay

min Z£ Yn; fo(Tn) ‘|‘>\ZHU/<H2

weight decay <= 0={(wr,vi)}i; ]

Jwp ||, =1

e Weight decay is equivalent to a non-convex multitask lasso.

What Kinds of Functions Do Neural Networks Learn?

Why Do Neural Networks Work Well in High-Dimensional Problems?

Principled Compression Algorithms for Pre-Trained DNNs.



A Banach Space Representer Theorem

Neural Network Representer Theorem (P. and Nowak 2021)

For any data set {(x,,,y,)}._, and lower semicontinuous £(-, -),
there exists a solution to

N
. L % T A 2, >\>O,
fér;lgw; (Yn, f(@n)) + A fllz BV

that admits a representation of the form

K
fReLU(T) = ka(wlw — br) 4|+ wgm + bo,| | K < N.

k=1 RelLU neurons skip connection sparse solution

Training a sufficiently parameterized

neural network (K > N) with weight Neural networks learn
decay (to a global minimizer) is a solution 2 BV“-functions.

to the Banach space problem.

P. and Nowak (2021, Journal of Machine Learning Research)



Minimax Optimality of Neural Networks

Suppose that {x,, }_, are i.i.d. uniform on a bounded domain 2 C R<.
If v, = f*(x,) + e, with || f*||zBv2 < o0, then any solution to

N K
, A weight decay
freru € argmin > L(yn, fo(@n)) + 5 > lonl* + [ will3 objecive
n=1 k=1

Satisfies no curse
~ d+3 ~ r

E|f* — freLull?2(q) = O(N"20%3) = O(N~2).

minimax rate

Linear methods (thin-plate splines, kernel methods, neural tangent
kernels, etc.) necessarily suffer the curse of dimensionality.

. .. _ .3
Linear minimax lower bound: /N~ d+3

the curse

P. and Nowak (2023, IEEE Transactions on Information Theory)



Principled DNN Compression

VGG-19 trained with weight decay on CIFAR-10.
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Theory: There exists a representation with < 100 neurons
that can be found by solving a convex multitask lasso problem.

original network  compressed network

active neurons 9512 47 10x compression!
test accuracy  93.92% 93.88% no change in
train loss 0.0104 0.0112 performance!

Shenouda, P., Lee, and Nowak (2023+) 10



Conclusion

IEEE

SignalProgessing

e General audience overview article:

— Deep Learning Meets Sparse Regularization: A signal processing perspective
Rahul Parhi and Robert D. Nowak
IEEE Signal Processing Magazine, vol. 40, no. 6, pp. 63—74, Sept. 2023.

e Technical articles:

— Banach Space Representer Theorems for Neural Networks and Ridge Splines
Rahul Parhi and Robert D. Nowak
Journal of Machine Learning Research, vol. 22, no. 43, pp. 1-40, 2021.
— What Kinds of Functions Do Deep Neural Networks Learn? Insights from Variational Spline Theory
Rahul Parhi and Robert D. Nowak
SIAM Journal on Mathematics of Data Science, vol. 4, no. 2, pp. 464-489, 2022.
— Near-Minimax Optimal Estimation With Shallow RelL U Neural Networks
Rahul Parhi and Robert D. Nowak
|[EEE Transactions on Information Theory, vol. 69, no. 2, pp. 1125-1140, Feb. 2023.
— Vector-Valued Variation Spaces and Width Bounds for DNNs: Insights on Weight Decay Regularization
Joseph Shenouda, Rahul Parhi, Kangwook Lee, Robert D. Nowak
arXiv preprint arXiv:2305.16534, 2023+

Questions?
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The Structured Sparsity of Weight Decay

N K -
. weight decay
oo Zﬁ(ymfé’(wn))‘l‘)‘ZHUkHQ —
O={(wr,vr)}e1 5, k=1 :
|wg||,=1 non-convex multitask lasso
dense weights sparse weights sparse neurons
K
D
fi(x)
f2(x)
15 fp(x)
|fllv = O(EVD) Ifllv = 0(D) Ifv = O(VD)

Weight decay favors variation in only a few directions (sparse weights)

Weight decay favors outputs that “share” neurons (sparse neurons)
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Tight Bounds on Widths

/\(I):{qsn 7];[:1 K
min = Y [vgllz st ¥ =V

foedizy 15

v Low-rank data embeddings have been
observed empirically by Huh et al. (2022).

Layer Width Theorem (Shenouda, P., Lee and Nowak 2023+ )

Let @ denote the post-activation features and ¥ denote the neuron
outputs of any RelLU layer in a trained DNN (minimizes the
weight decay objective). Then, there exists a representation with

K < rank((I)) rank(\Il) < N? Bound of Jacot (2023): N(N +1).

neurons. The representation can be found by solving a convex
multitask lasso problem.

Shenouda, P., Lee, and Nowak (2023+) 13



