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What is Learning?

o Let {(n,yn)}_, C R x RP be a data set, and let X be a
(Banach) space of functions mapping R? — RP.

® The goal is to find f € X such that f(x,) =~ yn.
® Consider the minimization
N

;rgg(l C(Yn, f(x0)).

n=1

— When X is an infinite-dimensional space, this problem is
ill-posed.

How do we make this problem well-posed?

Regularize!
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(Explicit) Regularization

® |nstead consider the minimization

N

i g ny n >\ p7
iy 3 (s £ () + A

where ||-|| is a (semi)norm, A >0, 1 < p < oo.
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Three Remarkable Ideas

@ Smoothing Splines (1960s-1970s)

— (?/L?/Tikhonov regularization
= RKHS theory and kernel methods

® Wavelet Thresholding (1990s)
— ('/L'/TV regularization
— Sparse signal and image processing
© Neural Networks Trained with GD (1990s—present)
= (1/L'/TV regularization
— Everything
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Comparing These Approaches

Consider the following function spaces defined in terms of the
second (distributional) derivative of a function f, D? f.

H?0,1] = {f :[0,1] = R: D? f € L*0,1]},
BV2, J={f:0,1] = R: D?f e M0,1]},

where M0, 1] is the space of finite (Radon) measures on [0, 1].
e H?[0,1] € BV?[0,1] c L?[0,1].
—  H?[0,1] is a Hilbert space.
— BV?[0,1] is a (non-Hilbertian) Banach space.

= Functions with discontinuous derivatives are in BV?[0, 1], but
not in H2[0, 1].
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Learning in H2[0,1]: Smoothing Splines

Suppose f € HQ[O, 1] and we observe

Yn = f(xn) + en,

where g, is i.i.d. white noise. The solution fss to

N
min Lyn, f(zn)) + A D? f||?
i3 e £ + D S

n=1
is a cubic smoothing spline! and satisfies
E|f = fsll7e S N7Y5,

which is the minimax rate for H2[0,1].

Lde Boor & Lynch, 1966; Kimeldorf & Wahba, 1970

6/38



Learning in H2[0,1]: Wavelet Thresholding

The solution fwa\, to
N
moitn ZE yn,zaj,k%‘,k(xn) + A1
n=1 7.k

is a wavelet thresholding estimator® and satisfies
T2 —4/5
EHf - fanHL2 S N / )

which is the minimax rate for H2[0,1].

2Donoho, 1995
7/38



Learning in H2[0,1]: Locally Adaptive Splines

The solution f,s to

N
. E n n _"_A D2
e nz::l (Yns [ (2n)) + AID” fllam

is a locally adaptive linear spline3 of the form
K

flas(x) =co+Cc1x + Zak p(:B — tk),
k=1

where p = max{0, -} is the ReLU.
K K
° D2{00 + 1+ Zakp(x — tk)} = Zak 5(- — tg).
k=1

k=1
® The optimal coefficients & minimize

N
S Uy, f(a)) + Alal -

n=1

3Fisher & Jerome, 1975; Mammen and van de Geer, 1997
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Learning in H2[0,1]: Neural Networks

¢ A single-hidden layer ReLU network (with a skip connection):

K

fv,w,b,c(l') =co+cx+ Z Vk p(wkx — bk)
k=1

— Same form as a locally adaptive linear spline.

K K
b
D2{co+clm+2akp(wkx—bk)} = kz_lvk|wk|5<, _ w’;)

k=1
® The solution to the neural network training problem

N
min E(ynaf'vwbc xn +>\Z‘Uk”wk‘

v,w,b,c
n=1

is a locally adaptive spline!
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Learning in H2[0,1]: Neural Networks

® let ﬁm be the solution to

N A K
min E(ynafvwbc(xn))+§Z|vk|2+ |wk|2'

v,w,b,c
n=1 k=1

— Training a neural network with weight decay.
® For any v > 0, (vg, wg) — (vg /7,y wy) does not change

v,w,b,c-

= At the solution |vy| = |wg|. Grandvalet, 1998; Neyshabur, 2015

® The above problem is equivalent to

N
v%ll?c - g(ynvf'uwbc $n +)\Z’Uk”wk|
= fnn is a locally adaptive linear spline! P. & Nowak, 2020
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Learning in H2[0,1]: Neural Networks

® The locally adaptive linear spline satisfies

E|lf - fisll?e S N7,

== The neural network trained with weight decay satisfies
]EHf - ﬁm”%Q § N74/5a
which is the minimax rate for F2[0, 1].

Remark

Training a neural network with weight decay appears to be
(?-regularization but is actually ¢'-regularization.
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Learning in BVZ[0, 1]

° ﬁ,s, fwa\,, fnn are all minimax optimal when f € HQ[O, 1].
* What if f € BV?[0,1]?
—  The minimax rate for BV?[0,1] is also N—4/5.

® \We have

-~ ~ -~
fSS fwav fnn

feH0,1] | N~45 N5 NP

feBV20,1] | N ¥4 N5 NTA/S

= The smoothing spline is suboptimal for f € BVZ[O, 1].
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BV?[0, 1] Functions are Spatially Inhomogeneous

true function and data

® Smoothing spline either oversmooths high variation portion of
data or undersmooths low variation portion of data.
— Drawback of kernel/Hilbert space methods in general.

wavelet denoising i neural network

15

® Wavelet and neural network approaches automatically adapt to
the local smoothness of the data. 13/38



What Kinds of Functions do Neural Networks Learn?

Question

What kinds of functions do shallow, univariate neural networks
learn?

Functions in the Banach space BV?[0, 1].

Even the simplest (shallow, univariate) neural networks are not
“fancy kernel machines”.
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What About Deep Neural Networks?
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Shallow Multivariate Neural Networks

® In the univariate case, single-hidden layer neural networks
solved a variational problem in
BV*(R) = {f:R—=R: |D? f|pm < 0o}

= TV?(f) = |D* |l m
— Key property is that D? sparsifies univariate neurons

D*{p(wz — b)} = |w|é(z — bjw)

® Multivariate neurons are x — p(wTa: —b), we RY b e R.

= These are “ridge functions”.

Is there an operator that sparsifies a multivariate neuron?

Answer

Yes, and it involves the Radon transform.
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The Sparsifying Operator

® Ridge functions are univariate functions “extended” outward in
all other dimenions.

a4

® We can use the Radon transform of a function f: R — R,

R} (1) /f 5(vTw —t)dz, (v,1) € ST xR,

to “extract” the underlying univariate function to extend
results for univariate functions to multivariate ridge functions.

= The "ridge trick".
—> Ridgelets (Candes, 1998)

17/38



The Sparsifying Operator

e Neuron

= p(wg (-) = bo), (wo,bp) € ST xR ‘

e Laplacian of neuron

= A{p(wg (-) = bo)} = 6(w; (-) — bo)
.

* Filtered Radon transform of Laplacian of neuron*

= (A2 D) {p(wl () —bo) } (. 1) = 6((7,1) — (wp, bo)).

4Ongie et al., 2020; P & Nowak, 2021
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Native Space for Shallow Neural Networks

Question
What would be the multivariate analogue of BV?(R)?

ZBV?(RY).

#BVARY) = {f RIS R ZTVA(f) < o0}

© ZTV?(f) =AM ZAf| m
= TV2(f) = D fllam-

® When d = 1, ZBV?*(R?%) = BV%(R) and
RTV?(:) = TV3().
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Representer Theorem

Theorem (P. & Nowak, 2021)

There exists a solution to the variational problem

(Y, f () + X2 TV?
fe%rlg\l/%(Rd Z Yn, f(@n)) (f)

of the form

K
= kap(w,;raz—bk) +c'z+cy, K <N.
k=1

° .]?iS a sparse single-hidden layer ReLU network with a skip
connection.

—  Skip connection corresponds to null space of Z TV?(.).
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Neural Network Training

° ZTV(f Z|Uk|||wk||2

— Can find a solutlon to

(s f(x0)) + AR TV?
fe%r}glvgw)z Yn, f(@n)) + (f)

by training a ReLU network with “path-norm” regularization:

min Zeyn,fe z,) +A2|vkmwk||2

vaccO)

or, equivalently, with weight decay:

min ZE Yn, fo(xn)) + )\Z\vk\ + [lwp |3

0= (vacco)

® Shallow multivariate neural networks learn functions in the
Banach space % BV?(R?).
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What is % BV?*(R%)?

e ZBV?(R?) is a non-Hilbertian Banach space.

d

£l Byv2@ay = ZTV2(f) + £ (0)] + Y _|f(ex) = f(0)]

k=1

= {ek}zzlisthecanonkalbadsin]R¢

e For f € ZBV%(RY), £l Bv2(ray is an upper bound of its
Lipschitz constant.

® Not a classically studied space in analysis.
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What is % BV?*(Q)?

° Let Q= {x eR?: ||z| <1}. Then,
ABVA(Q):={f: Q= R: Ige ZBV R s.t. g|, = f}
* Every f € ZBV?(Q) admits an integral representation

flx) = / p(wTa: —b) du(w,b) + ¢z + ¢
S4-1x[-1,1]

= We can approximate such integrals with K terms with L?(£2)
error that scales like < K~1/2, breaking the curse of

dimensionality. Maurey/Pisier, 1981; Barron 1993

23/38



Approximation Properties of %7 BV?*(Q)

* Given f € ZBV?(Q), there exists

K
fr(@) =Y opplwiz —b) + @+ e
k=1
such that
_1_3 _1
||f_fK||L2(Q) SK 2 S K.
This is the best rate. Bach, 2017; Siegel & Xu, 2021; P. & Nowak, 2021

® Compare this to the best K-term approximation rates in
H*[0,1]%, which scales as

If = fll SK 4

and is achieved by truncated Fourier series approximation.
= This rate grows exponentially with the input dimension d.
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Estimation Properties of %7 BV?*(Q)

* Given f € ZBV?(Q), suppose we observe
Yn = f(xy) +en, n=1,...,N,

where {mn} _1 C Q are nicely distributed and {5n} _, are
i.i.d. white noise.

® The solution to the neural network training problem

~

fny = argmin Zﬁyn,fe(mn +3 Z|Uk| "‘”wkH2

0= ('vacco)n 1

satisfies
2 _ d+3 1
Ellf = fnllze SN 2d53 SN2

— This rate does not grow with the input dimension d.
— This is the minimax rate. P. & Nowak, 2021
25/38



Data Fitting and Extrapolation

samples (red) ReLU net +
weight decay

| li
of 2D function thin-plate spline ReLU NTK

neural networks learn and extrapolate very differently than classical
multivariate estimation techniques and kernel methods in general
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Data Fitting and Extrapolation

samples (red) hinool i ReLU net +
of 2D function thin-plate spline RelU NTK weight decay

neural networks learn and extrapolate very differently than classical
multivariate estimation techniques and kernel methods in general
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Other Neural Spaces

® The so-called second-order spectral Barron space is a Banach
space when equipped with the norm

e = [ 1+ l)?IFe) de

Barron, 1993

o B> (Rd) C #BV? (Rd) Siegel & Xu, 2021; P. & Nowak 2021
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Deep Neural Networks

Question

What kinds of functions do deep neural networks learn?
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Preliminaries for Learning with Deep Neural Networks

e ZBVX(R%4:RP) = ZBVA(RY) x -« x ZBV?(RY).
D times

e ZBV?*(R?%RP) is a vector-valued Banach space when
equipped with the norm

I1f

D
#BV2(RERD) = Z||fm||%Bv2(Rd)a
m=1

where f: (fla'“?fD)'
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Compositional or “Deep” % BV? space

® Consider the space

(£) BV2(R%-1. R
BBV eep(L) = {f—f@)o.,.of(l) e ZBV( : )7}.

¢=1,...,L

® This definition captures two architectural specifications of deep
neural networks.

@ L, the number of hidden layers.
® d,, the functional “width” of each layer.
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Deep ReLU Network Representer Theorem

Representer Theorem (P. & Nowak 2021)

There exists a solution to the variational problem

i L
min (Y, fzn)) + A ® i
fee%’BViep(L) ; (y f( )) ;Hf ”%BVZ(]RdZ 1 Ré)

of the form z(&), where

z© =,
z® = VO p(WOgl-D _p®) 4 cOx(=D 1 cf)a, {=1,...,L.

~

Let f(z) == =1,
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Deep ReLU Network Representer Theorem

° fis a deep RelLU network with skip connections and rank
bounded weight matrices.

N
Sy

5

N

TN \\§?§§

7
<

Z
<

® The width of the ¢th RelLU layer is < Ndjp.

* The weight matrix between ReLU layers is A0 .= WDV (@),

A© satsifies rank(A ) < d,.
= dy is the "functional width” of layer £.
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Learning with Deep Neural Networks

Our representer theorem implies the neural network training problem

N

K® dy
£)2 £) 12 L
min >y, fo(wn) +AZ( Z|v<>|1+||w,i>|2+_zo|c§-)||1>.
J=

n=1

® “Modified” weight decay
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Benefits of Depth

® There exist functions in %BVgeep(L) with L > 2 that are not
in ZBV?(R%) (Ongie et al., 2020)
—  f(x) =max{0,1— ||z||;} “pyramid function”

— [ ¢ ZBV*(RY)
= [ ERABVep(L =2).

e Fitting data from the pyramid function with a shallow network
will result in large network weight norm.

e Fitting data from the pyramid function with a deep network
will result in small network weight norm.
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Takeaway Messages

® RelU networks trained with variants of weight decay are
. . . . 2
optimal solutions to learning in % BV, (L).
= This space includes spatially inhomogeneous functions.
— RelLU networks learn spatially inhomogeneous functions.
® The %BVgeeP(L) framework provides new rationale for skip
connections in network architectures.
® The %B\/geep(L) framework suggests considering
architectures with explicit low-rank weight matrices.
 RelLU networks learn functions in % BV -type function spaces

— These are new, not classical function spaces.
— ZBV?*(R?) is a non-reflexive Banach space with a
sparsity-promoting norm.
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