What Kinds of Functions do Neural Networks Learn?

Rahul Parhi Department of Electrical and Computer Engineering University of Wisconsin–Madison

(joint work with Robert Nowak)

Informal Talk, Simons Institute

November 24th, 2021

What is Learning?

- Let $\{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}_{n=1}^N \subset \mathbb{R}^d \times \mathbb{R}^D$ be a data set, and let \mathcal{X} be a (Banach) space of functions mapping $\mathbb{R}^d \to \mathbb{R}^D$.
- The goal is to find $f \in \mathcal{X}$ such that $f(\boldsymbol{x}_n) \approx \boldsymbol{y}_n$.
- Consider the minimization

$$\min_{f \in \mathcal{X}} \sum_{n=1}^{N} \ell(\boldsymbol{y}_n, f(\boldsymbol{x}_n)).$$

 \implies When ${\mathcal X}$ is an infinite-dimensional space, this problem is ${\color{black} {ill-posed}}.$

Question

How do we make this problem well-posed?

Answer

Regularize!

Instead consider the minimization

$$\min_{f \in \mathcal{X}} \sum_{n=1}^{N} \ell(\boldsymbol{y}_n, f(\boldsymbol{x}_n)) + \lambda \|f\|_{\mathcal{X}}^p,$$

where $\|\cdot\|_{\mathcal{X}}$ is a (semi)norm, $\lambda > 0$, $1 \le p < \infty$.

Three Remarkable Ideas

1 Smoothing Splines (1960s–1970s)

- $\implies \ell^2/L^2/\mathsf{Tikhonov}$ regularization
- \implies RKHS theory and kernel methods
- 2 Wavelet Thresholding (1990s)
 - $\implies \ell^1/L^1/\mathrm{TV}$ regularization
 - \implies Sparse signal and image processing
- 3 Neural Networks Trained with GD (1990s-present)
 - $\implies \ell^1/L^1/\mathrm{TV}$ regularization
 - \implies Everything

Comparing These Approaches

Consider the following function spaces defined in terms of the second (distributional) derivative of a function f, $D^2 f$.

$$\begin{split} \dot{H}^2[0,1] &\coloneqq \left\{ f: [0,1] \to \mathbb{R} : \ \mathrm{D}^2 f \in L^2[0,1] \right\},\\ \mathrm{BV}^2[0,1] &\coloneqq \left\{ f: [0,1] \to \mathbb{R} : \ \mathrm{D}^2 f \in \mathcal{M}[0,1] \right\}, \end{split}$$

where $\mathcal{M}[0,1]$ is the space of finite (Radon) measures on [0,1].

- $\dot{H}^2[0,1] \subset \mathrm{BV}^2[0,1] \subset L^2[0,1].$
 - $\implies \dot{H}^2[0,1]$ is a Hilbert space.
 - \implies BV²[0,1] is a (non-Hilbertian) **Banach space**.
 - \implies Functions with discontinuous derivatives are in $\mathrm{BV}^2[0,1]$, but not in $\dot{H}^2[0,1]$.

Learning in $\dot{H}^2[0,1]$: Smoothing Splines

Suppose $f \in \dot{H}^2[0,1]$ and we observe

$$y_n = f(x_n) + \varepsilon_n,$$

where ε_n is i.i.d. white noise. The solution \widehat{f}_{ss} to

$$\min_{f \in \dot{H}^2[0,1]} \sum_{n=1}^N \ell(y_n, f(x_n)) + \lambda \| \mathbf{D}^2 f \|_{L^2}^2$$

is a cubic smoothing spline¹ and satisfies

$$\mathbb{E}\|f-\widehat{f}_{\mathsf{ss}}\|_{L^2}^2 \lesssim N^{-4/5},$$

which is the **minimax rate** for $\dot{H}^2[0,1]$.

¹de Boor & Lynch, 1966; Kimeldorf & Wahba, 1970

Learning in $\dot{H}^2[0,1]$: Wavelet Thresholding

The solution $\widehat{f}_{\rm wav}$ to

$$\min_{\boldsymbol{\alpha}} \sum_{n=1}^{N} \ell \left(y_n, \sum_{j,k} \alpha_{j,k} \psi_{j,k}(x_n) \right) + \lambda \|\boldsymbol{\alpha}\|_1$$

is a wavelet thresholding estimator² and satisfies

$$\mathbb{E}\|f - \widehat{f}_{\text{wav}}\|_{L^2}^2 \lesssim N^{-4/5},$$

which is the **minimax rate** for $\dot{H}^2[0,1]$.

²Donoho, 1995

Learning in $\dot{H}^2[0,1]$: Locally Adaptive Splines

The solution $\widehat{f}_{\mathsf{las}}$ to

$$\min_{f \in BV^2[0,1]} \sum_{n=1}^{N} \ell(y_n, f(x_n)) + \lambda \| \mathbf{D}^2 f \|_{\mathcal{M}}$$

is a locally adaptive linear spline³ of the form

$$\hat{f}_{\mathsf{las}}(x) = c_0 + c_1 x + \sum_{k=1}^{K} \alpha_k \, \rho(x - t_k),$$

where $\rho = \max\{0, \cdot\}$ is the ReLU.

•
$$D^{2}\left\{c_{0}+c_{1}x+\sum_{k=1}^{k}\alpha_{k}\,\rho(x-t_{k})\right\}=\sum_{k=1}^{k}\alpha_{k}\,\delta(\cdot-t_{k}).$$

• The optimal coefficients lpha minimize

$$\sum_{n=1}^{N} \ell(y_n, f(x_n)) + \lambda \|\boldsymbol{\alpha}\|_1.$$

³Fisher & Jerome, 1975; Mammen and van de Geer, 1997

Learning in $\dot{H}^2[0,1]$: Neural Networks

• A single-hidden layer ReLU network (with a skip connection):

$$f_{\boldsymbol{v},\boldsymbol{w},\boldsymbol{b},\boldsymbol{c}}(x) = c_0 + c_1 x + \sum_{k=1}^{K} v_k \rho(w_k x - b_k).$$

 \implies Same form as a locally adaptive linear spline.

$$D^{2}\left\{c_{0}+c_{1}x+\sum_{k=1}^{K}\alpha_{k}\,\rho(w_{k}x-b_{k})\right\}=\sum_{k=1}^{K}v_{k}|w_{k}|\,\delta\left(\cdot-\frac{b_{k}}{w_{k}}\right).$$

The solution to the neural network training problem

$$\min_{\boldsymbol{v},\boldsymbol{w},\boldsymbol{b},\boldsymbol{c}} \sum_{n=1}^{N} \ell(y_n, f_{\boldsymbol{v},\boldsymbol{w},\boldsymbol{b},\boldsymbol{c}}(x_n)) + \lambda \sum_{k=1}^{K} |v_k| |w_k|$$

is a locally adaptive spline!

Learning in $\dot{H}^2[0,1]$: Neural Networks

• Let \widehat{f}_{nn} be the solution to

$$\min_{\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{c}} \sum_{n=1}^{N} \ell(y_n, f_{\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{c}}(x_n)) + \frac{\lambda}{2} \sum_{k=1}^{K} |v_k|^2 + |w_k|^2.$$

 \implies Training a neural network with weight decay.

• For any $\gamma > 0$, $(v_k, w_k) \mapsto (v_k/\gamma, \gamma w_k)$ does not change $f_{v,w,b,c}$.

 \implies At the solution $|v_k| = |w_k|$. Grandvalet, 1998; Neyshabur, 2015

• The above problem is equivalent to

$$\min_{\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{c}} \sum_{n=1}^{N} \ell(y_n, f_{\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{b}, \boldsymbol{c}}(x_n)) + \lambda \sum_{k=1}^{K} |v_k| |w_k|$$

 $\implies \widehat{f}_{nn}$ is a locally adaptive linear spline! P. & Nowak, 2020

Learning in $\dot{H}^2[0,1]$: Neural Networks

• The locally adaptive linear spline satisfies

$$\mathbb{E}\|f - \widehat{f}_{\mathsf{las}}\|_{L^2}^2 \lesssim N^{-4/5}.$$

 \implies The neural network trained with weight decay satisfies

$$\mathbb{E}\|f-\widehat{f}_{\mathsf{nn}}\|_{L^2}^2 \lesssim N^{-4/5},$$

which is the minimax rate for $\dot{H}^2[0,1]$.

Remark

Training a neural network with weight decay **appears** to be ℓ^2 -regularization but is actually ℓ^1 -regularization.

Learning in $BV^2[0,1]$

• \widehat{f}_{ss} , \widehat{f}_{wav} , \widehat{f}_{nn} are all **minimax optimal** when $f \in \dot{H}^2[0,1]$.

• What if $f \in BV^2[0,1]$?

 \implies The minimax rate for $\mathrm{BV}^2[0,1]$ is also $N^{-4/5}$.

We have

	\widehat{f}_{ss}	$\widehat{f}_{\sf wav}$	$\widehat{f}_{\sf n\sf n}$
$f\in \dot{H}^2[0,1]$	$N^{-4/5}$	$N^{-4/5}$	$N^{-4/5}$
$f\in \mathrm{BV}^2[0,1]$	$N^{-3/4}$	$N^{-4/5}$	$N^{-4/5}$

 \implies

The smoothing spline is suboptimal for $f \in BV^2[0,1]$.

$\mathrm{BV}^2[0,1]$ Functions are Spatially Inhomogeneous

 Smoothing spline either oversmooths high variation portion of data or undersmooths low variation portion of data.

Drawback of kernel/Hilbert space methods in general.

 Wavelet and neural network approaches automatically adapt to the local smoothness of the data.

What Kinds of Functions do Neural Networks Learn?

Question

What kinds of functions do **shallow**, **univariate** neural networks learn?

Answer

Functions in the **Banach space** $BV^2[0, 1]$.

Observation

Even the simplest (shallow, univariate) neural networks are **not** "fancy kernel machines".

What About Deep Neural Networks?

Shallow Multivariate Neural Networks

• In the univariate case, single-hidden layer neural networks solved a variational problem in

$$\mathrm{BV}^{2}(\mathbb{R}) = \left\{ f : \mathbb{R} \to \mathbb{R} : \|\mathrm{D}^{2} f\|_{\mathcal{M}} < \infty \right\}$$

$$\begin{array}{l} \implies \ \mathrm{TV}^2(f) \coloneqq \|\mathrm{D}^2 f\|_{\mathcal{M}} \\ \implies \ \mathrm{Key \ property \ is \ that \ D^2 \ sparsifies \ univariate \ neurons} \\ \mathrm{D}^2\{\rho(wx-b)\} = |w|\delta(x-b/w) \\ \mathrm{Multivariate \ neurons \ are \ } x \mapsto \rho(w^\mathsf{T} x - b), \ w \in \mathbb{R}^d, \ b \in \mathbb{R}^d \$$

• Multivariate neurons are $x \mapsto \rho(w^{T}x - b)$, $w \in \mathbb{R}^{d}$, $b \in \mathbb{R}$. \implies These are "ridge functions".

Question

Is there an operator that sparsifies a multivariate neuron?

Answer

Yes, and it involves the Radon transform.

The Sparsifying Operator

• Ridge functions are univariate functions "extended" outward in all other dimenions.

• We can use the Radon transform of a function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\mathscr{R}{f}(\boldsymbol{\gamma},t) = \int_{\mathbb{R}^d} f(\boldsymbol{x}) \delta(\boldsymbol{\gamma}^{\mathsf{T}}\boldsymbol{x}-t) \,\mathrm{d}\boldsymbol{x}, \quad (\boldsymbol{\gamma},t) \in \mathbb{S}^{d-1} \times \mathbb{R},$$

to "extract" the underlying univariate function to extend results for univariate functions to multivariate ridge functions.

 \implies Ridgelets

(Candès, 1998)

The Sparsifying Operator

Neuron

$$\implies \rho(\boldsymbol{w}_0^{\mathsf{T}}(\cdot) - b_0), \ (\boldsymbol{w}_0, b_0) \in \mathbb{S}^{d-1} \times \mathbb{R}$$

• Laplacian of neuron

$$\implies \Delta \left\{ \rho(\boldsymbol{w}_0^{\mathsf{T}}(\cdot) - b_0) \right\} = \delta(\boldsymbol{w}_0^{\mathsf{T}}(\cdot) - b_0)$$

• Filtered Radon transform of Laplacian of neuron⁴ $\implies (\Lambda^{d-1} \mathscr{R} \Delta) \{ \rho(\boldsymbol{w}_0^{\mathsf{T}}(\cdot) - b_0) \} (\boldsymbol{\gamma}, t) = \delta((\boldsymbol{\gamma}, t) - (\boldsymbol{w}_0, b_0)).$

⁴Ongie et al., 2020; P & Nowak, 2021

Native Space for Shallow Neural Networks

Question

What would be the multivariate analogue of $BV^2(\mathbb{R})$?

Answer

 $\mathscr{R} \operatorname{BV}^2(\mathbb{R}^d).$

$$\mathscr{R}\operatorname{BV}^2(\mathbb{R}^d)\coloneqq \left\{f:\mathbb{R}^d\to\mathbb{R}:\ \mathscr{R}\operatorname{TV}^2(f)<\infty\right\}$$

•
$$\mathscr{R} \operatorname{TV}^2(f) \coloneqq \|\Lambda^{d-1} \mathscr{R} \Delta f\|_{\mathcal{M}}$$

 $\implies \operatorname{TV}^2(f) = \|\mathrm{D}^2 f\|_{\mathcal{M}}.$

• When d = 1, $\mathscr{R} BV^2(\mathbb{R}^d) = BV^2(\mathbb{R})$ and $\mathscr{R} TV^2(\cdot) = TV^2(\cdot)$.

Representer Theorem

Theorem (P. & Nowak, 2021)

There exists a solution to the variational problem

$$\min_{f \in \mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)} \sum_{n=1}^N \ell(y_n, f(\boldsymbol{x}_n)) + \lambda \, \mathscr{R} \operatorname{TV}^2(f)$$

of the form

$$\widehat{f}(\boldsymbol{x}) = \sum_{k=1}^{K} v_k \rho(\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x} - b_k) + \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} + c_0, \quad K < N.$$

• \hat{f} is a **sparse** single-hidden layer ReLU network with a skip connection.

 \implies Skip connection corresponds to null space of $\mathscr{R}\operatorname{TV}^2(\cdot)$.

Neural Network Training

•
$$\mathscr{R} \operatorname{TV}^{2}(\widehat{f}) = \sum_{k=1}^{K} |v_{k}| ||\boldsymbol{w}_{k}||_{2}.$$

 \implies Can find a solution to
 $\min \sum_{k=1}^{N} \ell(y_{n}, f(\boldsymbol{x}_{n})) + \lambda \mathscr{R} \operatorname{T}$

$$\min_{f \in \mathscr{R} \operatorname{BV}^{2}(\mathbb{R}^{d})} \sum_{n=1}^{\infty} \ell(y_{n}, f(\boldsymbol{x}_{n})) + \lambda \,\mathscr{R} \operatorname{TV}^{2}(f)$$

by training a ReLU network with "path-norm" regularization:

$$\min_{\boldsymbol{\theta}=(\boldsymbol{v},\mathbf{W},\boldsymbol{b},\boldsymbol{c},c_0)}\sum_{n=1}^N \ell(y_n,f_{\boldsymbol{\theta}}(\boldsymbol{x}_n)) + \lambda \sum_{k=1}^K |v_k| \|\boldsymbol{w}_k\|_2.$$

or, equivalently, with weight decay:

$$\min_{\boldsymbol{\theta} = (\boldsymbol{v}, \mathbf{W}, \boldsymbol{b}, \boldsymbol{c}, c_0)} \sum_{n=1}^{N} \ell(y_n, f_{\boldsymbol{\theta}}(\boldsymbol{x}_n)) + \lambda \sum_{k=1}^{K} |v_k|^2 + \|\boldsymbol{w}_k\|_2^2$$

• Shallow multivariate neural networks learn functions in the Banach space $\mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)$.

What is $\mathscr{R} BV^2(\mathbb{R}^d)$?

• $\mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)$ is a **non-Hilbertian** Banach space.

$$||f||_{\mathscr{R} \operatorname{BV}^{2}(\mathbb{R}^{d})} \coloneqq \mathscr{R} \operatorname{TV}^{2}(f) + |f(\mathbf{0})| + \sum_{k=1}^{d} |f(\boldsymbol{e}_{k}) - f(\mathbf{0})|$$

$$\implies \{e_k\}_{k=1}^d$$
 is the canonical basis in \mathbb{R}^d .

- For $f \in \mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)$, $||f||_{\mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)}$ is an upper bound of its Lipschitz constant.
- Not a classically studied space in analysis.

What is $\mathscr{R} BV^2(\Omega)$?

• Let
$$\Omega = ig\{ oldsymbol{x} \in \mathbb{R}^d : \; \|oldsymbol{x}\| \leq 1 ig\}.$$
 Then,

 $\mathscr{R}\operatorname{BV}^2(\Omega)\coloneqq \{f:\Omega\to\mathbb{R}:\ \exists g\in\mathscr{R}\operatorname{BV}^2(\mathbb{R}^d)\ \text{s.t.}\ g\big|_\Omega=f\}$

• Every $f \in \mathscr{R} \operatorname{BV}^2(\Omega)$ admits an integral representation

$$f(\boldsymbol{x}) = \int_{\mathbb{S}^{d-1} \times [-1,1]} \rho(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} - b) \, \mathrm{d}\mu(\boldsymbol{w}, b) + \boldsymbol{c}^{\mathsf{T}} \boldsymbol{x} + c_0$$

 $\implies \mbox{We can approximate such integrals with } K \mbox{ terms with } L^2(\Omega) \\ \mbox{error that scales like} & \lesssim K^{-1/2}, \mbox{ breaking the curse of } \\ \mbox{dimensionality.} & \mbox{Maurey/Pisier, 1981; Barron 1993} \end{cases}$

Approximation Properties of $\mathscr{R} \operatorname{BV}^2(\Omega)$

• Given $f \in \mathscr{R} \operatorname{BV}^2(\Omega)$, there exists

$$f_K(\boldsymbol{x}) = \sum_{k=1}^{K} v_k \, \rho(\boldsymbol{w}_k^\mathsf{T} \boldsymbol{x} - b_k) + \boldsymbol{c}^\mathsf{T} \boldsymbol{x} + c_0$$

such that

$$||f - f_K||_{L^2(\Omega)} \lesssim K^{-\frac{1}{2} - \frac{3}{2d}} \lesssim K^{-\frac{1}{2}}.$$

This is the best rate. Bach, 2017; Siegel & Xu, 2021; P. & Nowak, 2021

• Compare this to the **best** K-term approximation rates in $H^s[0,1]^d$, which scales as

$$\|f - f_K\|_{L^2} \lesssim K^{-\frac{s}{d}}$$

and is achieved by truncated Fourier series approximation. \implies This rate **grows exponentially** with the input dimension *d*.

Estimation Properties of $\mathscr{R} \operatorname{BV}^2(\Omega)$

• Given $f \in \mathscr{R} \operatorname{BV}^2(\Omega)$, suppose we observe

$$y_n = f(\boldsymbol{x}_n) + \varepsilon_n, \ n = 1, \dots, N,$$

where $\{x_n\}_{n=1}^N \subset \Omega$ are nicely distributed and $\{\varepsilon_n\}_{n=1}^N$ are i.i.d. white noise.

• The solution to the neural network training problem

$$\widehat{f}_N = \operatorname*{arg\,min}_{\boldsymbol{\theta} = (\boldsymbol{v}, \mathbf{W}, \boldsymbol{b}, \boldsymbol{c}, c_0)} \sum_{n=1}^N \ell(y_n, f_{\boldsymbol{\theta}}(\boldsymbol{x}_n)) + \frac{\lambda}{2} \sum_{k=1}^K |v_k|^2 + \|\boldsymbol{w}_k\|_2^2$$

satisfies

$$\mathbb{E} \| f - \hat{f}_N \|_{L^2}^2 \lesssim N^{-\frac{d+3}{2d+3}} \lesssim N^{-\frac{1}{2}}.$$

Data Fitting and Extrapolation

neural networks learn and extrapolate very differently than classical multivariate estimation techniques and kernel methods in general

Data Fitting and Extrapolation

neural networks learn and extrapolate very differently than classical multivariate estimation techniques and kernel methods in general

• The so-called second-order **spectral Barron space** is a Banach space when equipped with the norm

$$\|f\|_{\mathscr{B}^{2}(\mathbb{R}^{d})} \coloneqq \int_{\mathbb{R}^{d}} (1 + \|\boldsymbol{\omega}\|_{2})^{2} |F(\boldsymbol{\omega})| \,\mathrm{d}\boldsymbol{\omega}$$

Barron, 1993

• $\mathscr{B}^2(\mathbb{R}^d) \subset \mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)$

Siegel & Xu, 2021; P. & Nowak 2021

Deep Neural Networks

Question

What kinds of functions do deep neural networks learn?

Preliminaries for Learning with Deep Neural Networks

•
$$\mathscr{R} \operatorname{BV}^2(\mathbb{R}^d; \mathbb{R}^D) = \underbrace{\mathscr{R} \operatorname{BV}^2(\mathbb{R}^d) \times \cdots \times \mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)}_{D \text{ times}}.$$

$$\|f\|_{\mathscr{R}\mathrm{BV}^2(\mathbb{R}^d;\mathbb{R}^D)} = \sum_{m=1}^D \|f_m\|_{\mathscr{R}\mathrm{BV}^2(\mathbb{R}^d)},$$

where $f = (f_1, ..., f_D)$.

Compositional or "Deep" $\mathscr{R} BV^2$ space

• Consider the space

$$\mathscr{R}\operatorname{BV}^{2}_{\operatorname{deep}}(L) \coloneqq \left\{ f = f^{(L)} \circ \cdots \circ f^{(1)} \middle| \begin{array}{c} f^{(\ell)} \in \mathscr{R}\operatorname{BV}^{2}(\mathbb{R}^{d_{\ell-1}}; \mathbb{R}^{d_{\ell}}), \\ \ell = 1, \dots, L \end{array} \right\}.$$

- This definition captures two architectural specifications of deep neural networks.
 - **1** *L*, the number of hidden layers.
 - **2** d_{ℓ} , the functional "width" of each layer.

Deep ReLU Network Representer Theorem

Representer Theorem (P. & Nowak 2021)

There exists a solution to the variational problem

$$\min_{f \in \mathscr{R} \operatorname{BV}^2_{\operatorname{deep}}(L)} \sum_{n=1}^N \ell(\boldsymbol{y}_n, f(\boldsymbol{x}_n)) + \lambda \sum_{\ell=1}^L \|f^{(\ell)}\|_{\mathscr{R} \operatorname{BV}^2(\mathbb{R}^{d_{\ell-1}}; \mathbb{R}^{d_\ell})}$$

of the form $oldsymbol{x}^{(L)}$, where

$$\begin{cases} \boldsymbol{x}^{(0)} \coloneqq \boldsymbol{x}, \\ \boldsymbol{x}^{(\ell)} \coloneqq \boldsymbol{V}^{(\ell)} \boldsymbol{\rho}(\boldsymbol{W}^{(\ell)} \boldsymbol{x}^{(\ell-1)} - \boldsymbol{b}^{(\ell)}) + \boldsymbol{C}^{(\ell)} \boldsymbol{x}^{(\ell-1)} + \boldsymbol{c}_0^{(\ell)}, \ \ell = 1, \dots, L. \end{cases}$$

Let $\widehat{f}(\boldsymbol{x}) \coloneqq \boldsymbol{x}^{(L)}.$

Deep ReLU Network Representer Theorem

• \hat{f} is a deep ReLU network with skip connections and rank bounded weight matrices.

- The width of the ℓ th ReLU layer is $\leq Nd_{\ell}$.
- The weight matrix between ReLU layers is $\mathbf{A}^{(\ell)} \coloneqq \mathbf{W}^{(\ell+1)} \mathbf{V}^{(\ell)}$. $\mathbf{A}^{(\ell)}$ satsifies $\operatorname{rank}(\mathbf{A}^{(\ell)}) \leq d_{\ell}$. $\implies d_{\ell}$ is the "functional width" of layer ℓ .

Learning with Deep Neural Networks

Our representer theorem implies the neural network training problem

$$\min_{\boldsymbol{\theta}\in\Theta} \sum_{n=1}^{N} \ell(\boldsymbol{y}_n, f_{\boldsymbol{\theta}}(\boldsymbol{x}_n)) + \lambda \sum_{\ell=1}^{L} \left(\frac{1}{2} \sum_{k=1}^{K^{(\ell)}} \|\boldsymbol{v}_k^{(\ell)}\|_1^2 + \|\boldsymbol{w}_k^{(\ell)}\|_2^2 + \sum_{j=0}^{d_{\ell}} \|\boldsymbol{c}_j^{(\ell)}\|_1 \right).$$

• "Modified" weight decay

Benefits of Depth

There exist functions in *R* BV²_{deep}(L) with L ≥ 2 that are not in *R* BV²(ℝ^d) (Ongie et al., 2020)
 ⇒ f(x) = max{0, 1 - ||x||₁} "pyramid function"

$$\begin{array}{ll} \implies & f \not\in \mathscr{R} \operatorname{BV}^2(\mathbb{R}^d) \\ \implies & f \in \mathscr{R} \operatorname{BV}^2_{\operatorname{\mathsf{deep}}}(L=2) \end{array} \end{array}$$

- Fitting data from the pyramid function with a shallow network will result in **large** network weight norm.
- Fitting data from the pyramid function with a deep network will result in **small** network weight norm.

Takeaway Messages

- ReLU networks trained with variants of weight decay are optimal solutions to learning in *R* BV²_{deep}(L).
 - \implies This space includes spatially inhomogeneous functions.
 - \implies ReLU networks learn spatially inhomogeneous functions.
- The $\mathscr{R} \operatorname{BV}^2_{\operatorname{deep}}(L)$ framework provides new rationale for skip connections in network architectures.
- The *R* BV²_{deep}(L) framework suggests considering architectures with explicit low-rank weight matrices.
- ReLU networks learn functions in $\mathscr{R}\operatorname{BV}^2$ -type function spaces
 - \implies These are **new**, **not classical** function spaces.
 - $\implies \mathscr{R} \operatorname{BV}^2(\mathbb{R}^d)$ is a **non-reflexive Banach space** with a sparsity-promoting norm.

References I

Bach, Francis (2017). "Breaking the curse of dimensionality with convex neural networks". In: Journal of Machine Learning Research.

Barron, Andrew R. (1993). "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory.

Candès, Emmanuel J. (1998). "Ridgelets: theory and applications". PhD thesis. Stanford University Stanford.

de Boor, Carl and Robert E. Lynch (1966). "On splines and their minimum properties". In: Journal of Mathematics and Mechanics.

Donoho, David L. (1995). "De-noising by soft-thresholding". In: IEEE transactions on information theory 41.3, pp. 613–627.

Fisher, S. D. and Joseph W. Jerome (1975). "Spline solutions to L^1 extremal problems in one and several variables". In: Journal of Approximation Theory 13.1, pp. 73–83.

Grandvalet, Yves (1998). "Least absolute shrinkage is equivalent to quadratic penalization". In: International Conference on Artificial Neural Networks. Springer, pp. 201–206.

Kimeldorf, George S. and Grace Wahba (1970). "A correspondence between Bayesian estimation on stochastic processes and smoothing by splines". In: The Annals of Mathematical Statistics 41.2, pp. 495–502.

Mammen, Enno and Sara van de Geer (1997). "Locally adaptive regression splines". In: Annals of Statistics 25.1, pp. 387–413.

Neyshabur, Behnam, Ryota Tomioka, and Nathan Srebro (2015). "In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning". In: 3rd International Conference on Learning Representations, Workshop Track Proceedings.

References II

Ē. Ongie, Greg, Rebecca Willett, Daniel Soudry, and Nathan Srebro (2020). "A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case". In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, Parhi, Rahul and Robert D. Nowak (2020), "The role of neural network activation functions". In: IEEE Signal Processing Letters 27, pp. 1779–1783. (2021a). "Banach space representer theorems for neural networks and ridge splines". In: Journal of Machine Learning Research 22.43, pp. 1-40. (2021b). "Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks". In: arXiv preprint arXiv:2109.08844. (2021c). "What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory", In: arXiv preprint arXiv:2105.03361. Pisier, Gilles (1981). "Remarques sur un résultat non publié de B. Maurey". In: Séminaire Analyse fonctionnelle (dit, pp. 1-12.

Siegel, Jonathan W. and Jinchao Xu (2021). "Characterization of the Variation Spaces Corresponding to Shallow Neural Networks". In: arXiv preprint arXiv:2106.15002.